LISRD开源项目安装与使用指南
2024-09-26 17:30:49作者:侯霆垣
1. 目录结构及介绍
LISRD 是一个实现“运行时局部不变性选择描述符”的项目,旨在动态选择最适合当前匹配需求的特征描述符。以下是该仓库的基本目录结构及其简介:
.gitignore: 控制Git在版本控制中忽略哪些文件或目录。.gitmodules: 若项目包含子模块,则定义这些子模块的路径和URL。LICENSE: 项目的MIT许可证文件,说明了软件使用的权限和限制。README.md: 项目的主要文档,包含快速概述和基本使用说明。makefile: Makefile,用于自动化一些命令执行,如安装依赖等。requirements.txt: 列出了项目运行所需的Python包及其版本。setup.py: 用于设置和安装项目作为Python库的脚本。assets,lisrd,notebooks,weights: 这些目录分别存储资产文件、主程序代码、示例笔记本和预训练模型。lisrd和notebooks目录包含了核心算法实现和演示如何使用这些算法的Jupyter Notebook。weights包含预先训练好的模型权重。config目录存放着各种配置文件,用于自定义训练过程。
2. 项目启动文件介绍
主要的启动入口不在单个“启动文件”中,而是通过命令行界面操作。要开始使用LISRD,你需要通过以下步骤进行操作而不是直接启动某个文件。关键的操作是通过Python脚本来调用,例如使用python -m lisrd后跟不同的命令来执行特定任务,比如训练模型或导出特征。
- 安装与初始化: 使用
git clone --recurse-submodules https://github.com/rpautrat/LISRD.git克隆项目,并通过make install安装必要的依赖并设置项目。 - 训练模型: 运行类似
python -m lisrd.experiment train lisrd/configs/lisrd.yaml ~/Documents/experiments/My_experiment的命令来训练自定义模型。 - 使用模型: 通过脚本或Notebook调用LISRD功能,具体用法可在提供的Notebook中找到示例。
3. 项目的配置文件介绍
项目的核心配置位于lisrd/configs目录下,其中每个.yaml文件代表一组训练或实验参数。对于使用者来说,重要的是理解这些配置文件中的变量作用,以便于调整训练过程以满足特定需求。
lisrd.yaml: 用于标准LISRD模型的训练配置,支持多种类型的不变性学习。lisrd_sift.yaml: 特定于LISRD-SIFT的配置,它在SIFT和Upright SIFT之间选择最佳描述符。
配置文件通常包括但不限于网络架构细节、损失函数设置、优化器的选择、数据集路径、批次大小等关键训练参数。用户可以根据自己的需求修改这些配置文件来进行定制化训练。
通过遵循上述指南,开发者可以顺利地安装并开始使用LISRD项目,无论是利用预训练模型还是训练新的模型来适应特定的图像处理场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869