LISRD开源项目安装与使用指南
2024-09-26 17:14:46作者:侯霆垣
1. 目录结构及介绍
LISRD 是一个实现“运行时局部不变性选择描述符”的项目,旨在动态选择最适合当前匹配需求的特征描述符。以下是该仓库的基本目录结构及其简介:
.gitignore: 控制Git在版本控制中忽略哪些文件或目录。.gitmodules: 若项目包含子模块,则定义这些子模块的路径和URL。LICENSE: 项目的MIT许可证文件,说明了软件使用的权限和限制。README.md: 项目的主要文档,包含快速概述和基本使用说明。makefile: Makefile,用于自动化一些命令执行,如安装依赖等。requirements.txt: 列出了项目运行所需的Python包及其版本。setup.py: 用于设置和安装项目作为Python库的脚本。assets,lisrd,notebooks,weights: 这些目录分别存储资产文件、主程序代码、示例笔记本和预训练模型。lisrd和notebooks目录包含了核心算法实现和演示如何使用这些算法的Jupyter Notebook。weights包含预先训练好的模型权重。config目录存放着各种配置文件,用于自定义训练过程。
2. 项目启动文件介绍
主要的启动入口不在单个“启动文件”中,而是通过命令行界面操作。要开始使用LISRD,你需要通过以下步骤进行操作而不是直接启动某个文件。关键的操作是通过Python脚本来调用,例如使用python -m lisrd后跟不同的命令来执行特定任务,比如训练模型或导出特征。
- 安装与初始化: 使用
git clone --recurse-submodules https://github.com/rpautrat/LISRD.git克隆项目,并通过make install安装必要的依赖并设置项目。 - 训练模型: 运行类似
python -m lisrd.experiment train lisrd/configs/lisrd.yaml ~/Documents/experiments/My_experiment的命令来训练自定义模型。 - 使用模型: 通过脚本或Notebook调用LISRD功能,具体用法可在提供的Notebook中找到示例。
3. 项目的配置文件介绍
项目的核心配置位于lisrd/configs目录下,其中每个.yaml文件代表一组训练或实验参数。对于使用者来说,重要的是理解这些配置文件中的变量作用,以便于调整训练过程以满足特定需求。
lisrd.yaml: 用于标准LISRD模型的训练配置,支持多种类型的不变性学习。lisrd_sift.yaml: 特定于LISRD-SIFT的配置,它在SIFT和Upright SIFT之间选择最佳描述符。
配置文件通常包括但不限于网络架构细节、损失函数设置、优化器的选择、数据集路径、批次大小等关键训练参数。用户可以根据自己的需求修改这些配置文件来进行定制化训练。
通过遵循上述指南,开发者可以顺利地安装并开始使用LISRD项目,无论是利用预训练模型还是训练新的模型来适应特定的图像处理场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140