LISRD:实时局部不变性选择描述符
2024-09-22 15:17:09作者:何将鹤
项目介绍
LISRD(Local Invariance Selection at Runtime for Descriptors)是一个基于深度学习的开源项目,旨在解决图像匹配中的不变性选择问题。该项目由Rémi Pautrat、Viktor Larsson、Martin R. Oswald和Marc Pollefeys共同开发,并在ECCV 2020上进行了口头报告。LISRD的核心思想是利用不同不变性的描述符(如旋转不变或光照不变),并在匹配两幅图像时在线选择最合适的描述符,从而提高匹配的准确性和鲁棒性。
项目技术分析
LISRD的技术实现基于深度学习模型,通过训练模型来选择最优的描述符。项目提供了两种预训练模型:lisrd_aachen和lisrd_vidit,分别在不同的数据集上进行了训练。用户可以通过配置文件自定义训练参数,训练自己的模型。LISRD支持多种描述符类型,包括SIFT和Upright SIFT,用户可以根据需求选择合适的描述符进行匹配。
项目及技术应用场景
LISRD在多个领域具有广泛的应用前景,特别是在需要高精度图像匹配的场景中。例如:
- 计算机视觉:在图像检索、目标识别和场景重建等任务中,LISRD可以显著提高匹配的准确性。
- 机器人导航:在SLAM(同步定位与地图构建)系统中,LISRD可以帮助机器人更准确地识别和匹配环境中的特征点。
- 增强现实:在AR应用中,LISRD可以提高虚拟对象与现实场景的匹配精度,提升用户体验。
项目特点
- 实时性:LISRD能够在运行时动态选择最优的描述符,适用于实时图像匹配任务。
- 灵活性:支持多种描述符类型,用户可以根据具体需求选择合适的描述符进行匹配。
- 高精度:在多个数据集上的实验结果表明,LISRD在图像匹配任务中表现优异,显著优于现有的方法。
- 易于使用:项目提供了详细的安装和使用说明,用户可以轻松上手,并根据自己的需求进行定制化开发。
结语
LISRD作为一个创新的图像匹配工具,通过在线选择最优的描述符,显著提高了图像匹配的准确性和鲁棒性。无论是在学术研究还是工业应用中,LISRD都展现出了巨大的潜力。如果你正在寻找一个高效、灵活且易于使用的图像匹配工具,LISRD绝对值得一试。
参考文献
@InProceedings{Pautrat_2020_ECCV,
author = {Pautrat, Rémi and Larsson, Viktor and Oswald, Martin R. and Pollefeys, Marc},
title = {Online Invariance Selection for Local Feature Descriptors},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2020},
}
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869