探秘实时开放领域问答:Dense-Sparse Phrase Index

这个项目,名为Dense-Sparse Phrase Index,是一个即将在 ACL 2019 上发表的创新解决方案,它将开放领域的问答(Open-Domain QA)转化为纯粹的短语检索问题。项目的核心在于对在线百科全书中的每一个短语进行枚举、嵌入和索引,使得整个百科全书能在0.5秒内通过CPU被读取,实现比"检索&阅读"模型快至少58倍的长尾答案检索速度。
实时演示与预设环境
你可以尝试其在线实时演示,或将其部署到本地。但请注意,这将需要大约1.5TB的存储空间,并且建议使用至少4核CPU和30GB内存。如果你选择Google Cloud,强烈推荐使用成本更低且访问延迟更小的Local SSD。
部署步骤
- 确保使用Conda并创建Python 3.6环境。
- 手动安装
faiss-cpu(不支持pip安装)。 - 安装
DrQA及其所需的Java JDK。 - 使用pip安装两个
requirements.txt文件内的依赖。
数据下载
模型和数据文件托管在Google Cloud Storage上,需先安装gsutil进行下载。所有文件一次性下载将占用约1.5TB空间。
运行Demo
首先运行服务端,提供一个GET接口以获取问题的向量表示。然后启动演示服务器,在一分钟内即可开始服务。
自定义训练
已提供了预先训练好的模型,但如果你想自定义训练,可以分为三步:
- 在SQuAD v1.1数据集上进行初步训练。
- 加入负样本进行微调。
- 最后训练分类器,只更新末端的分类层。
创建自定义短语索引
你可以从SQuAD的开发数据集创建一个小型索引进行测试,或者使用自己的文档。使用训练好的模型,先导出短语向量,再构建FAISS索引,最后处理TF-IDF向量。
应用于大规模数据
对于更大的索引,如百科全书全库,可能需要分布式处理和更大的内存资源来构建FAISS索引。
支持与致谢
有任何问题,请通过Github Issues提出。本项目大量借鉴了faiss,DrQA以及BERT,特别是Huggingface的PyTorch实现版本。感谢这些开源项目的贡献!
这个项目不仅提供了高速的问答解决方案,还让开发者有机会自定义训练和创建索引,为研究者和开发者开辟了一个全新的探索领域。无论是学术研究还是实际应用,Dense-Sparse Phrase Index都是值得尝试的工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00