探秘实时开放领域问答:Dense-Sparse Phrase Index
这个项目,名为Dense-Sparse Phrase Index,是一个即将在 ACL 2019 上发表的创新解决方案,它将开放领域的问答(Open-Domain QA)转化为纯粹的短语检索问题。项目的核心在于对在线百科全书中的每一个短语进行枚举、嵌入和索引,使得整个百科全书能在0.5秒内通过CPU被读取,实现比"检索&阅读"模型快至少58倍的长尾答案检索速度。
实时演示与预设环境
你可以尝试其在线实时演示,或将其部署到本地。但请注意,这将需要大约1.5TB的存储空间,并且建议使用至少4核CPU和30GB内存。如果你选择Google Cloud,强烈推荐使用成本更低且访问延迟更小的Local SSD。
部署步骤
- 确保使用Conda并创建Python 3.6环境。
- 手动安装
faiss-cpu
(不支持pip安装)。 - 安装
DrQA
及其所需的Java JDK。 - 使用pip安装两个
requirements.txt
文件内的依赖。
数据下载
模型和数据文件托管在Google Cloud Storage上,需先安装gsutil
进行下载。所有文件一次性下载将占用约1.5TB空间。
运行Demo
首先运行服务端,提供一个GET接口以获取问题的向量表示。然后启动演示服务器,在一分钟内即可开始服务。
自定义训练
已提供了预先训练好的模型,但如果你想自定义训练,可以分为三步:
- 在SQuAD v1.1数据集上进行初步训练。
- 加入负样本进行微调。
- 最后训练分类器,只更新末端的分类层。
创建自定义短语索引
你可以从SQuAD的开发数据集创建一个小型索引进行测试,或者使用自己的文档。使用训练好的模型,先导出短语向量,再构建FAISS索引,最后处理TF-IDF向量。
应用于大规模数据
对于更大的索引,如百科全书全库,可能需要分布式处理和更大的内存资源来构建FAISS索引。
支持与致谢
有任何问题,请通过Github Issues提出。本项目大量借鉴了faiss
,DrQA
以及BERT
,特别是Huggingface的PyTorch实现版本。感谢这些开源项目的贡献!
这个项目不仅提供了高速的问答解决方案,还让开发者有机会自定义训练和创建索引,为研究者和开发者开辟了一个全新的探索领域。无论是学术研究还是实际应用,Dense-Sparse Phrase Index都是值得尝试的工具。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









