数据中毒基准测试:深度学习安全中的统一挑战
该项目提供了一个统一的基准问题,用于评估数据中毒攻击在深度学习模型上的效果,特别是针对背门攻击和数据投毒攻击。通过此基准,研究人员和开发者可以标准化他们的实验,并比较不同策略在对抗训练数据污染时的性能。
1. 项目介绍
数据中毒基准测试是基于论文《Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks》实现的一个开源工具。它旨在为研究社区提供一个标准框架,以便于分析和比较不同的数据投毒攻击及防御策略。该库支持CIFAR-10和TinyImageNet数据集,涵盖了从白盒到黑盒攻击场景,以及从特征碰撞到隐藏触发器后门等多种攻击模式。
2. 项目快速启动
环境准备
首先,确保安装必要的Python环境,然后添加项目依赖项:
pip install -r requirements.txt
接着下载TinyImageNet数据集(或确保已拥有)并正确设置路径。在learning_module.py中更新TINYIMAGENET_ROOT变量指向解压后的TinyImageNet目录。
运行基准测试
为了快速验证模型对特定中毒数据的响应,你可以执行以下命令来测试你的模型:
python test_model.py --model <模型名称> --model_path <模型文件路径>
对于更详细的控制或创建和评估毒药样本,参考how_to.md文件的详细指导。
3. 应用案例和最佳实践
创造和评估毒药样本
用户可以通过提供的脚本生成毒药样本并进行评估。例如,要测试一批特定的毒药样本对模型的影响,运行:
python poison_test.py --model <模型名称> --model_path <模型文件路径> --poisons_path <毒药样本目录>
对于全面的基准测试,包括100批毒药样本的制作和评价,执行脚本:
bash benchmark_all.sh <含有100批毒药样本的目录> [from_scratch]
其中,可选参数from_scratch用于指示从头开始训练的情况。
最佳实践
- 在开发新攻击方法时,遵循项目的结构和提供的setup pickle文件。
- 对公开的结果负责,如需登上排行榜,则应在线托管所有毒药数据集以供复现。
4. 典型生态项目
虽然本项目本身是作为一个独立的基准测试存在,其生态系统涵盖了深度学习安全的广泛研究领域,包括但不限于:
- 防御策略研究:寻找有效的方法检测和缓解数据中毒影响的项目。
- 自动化评估工具:结合自动化评估流程,使得不同攻击方案的比较更加便捷。
- 数据集增强与清洗:开发新的数据增强技术,以减少对恶意输入的敏感性。
通过参与和贡献于类似的研究和项目,社区可以共同提升模型的安全性和鲁棒性。
以上就是对data-poisoning-benchmark项目的一个基本介绍和使用指南。深入探索这个项目将帮助您更好地理解和应对数据中毒攻击在机器学习领域的挑战。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00