数据中毒基准测试:深度学习安全中的统一挑战
该项目提供了一个统一的基准问题,用于评估数据中毒攻击在深度学习模型上的效果,特别是针对背门攻击和数据投毒攻击。通过此基准,研究人员和开发者可以标准化他们的实验,并比较不同策略在对抗训练数据污染时的性能。
1. 项目介绍
数据中毒基准测试是基于论文《Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks》实现的一个开源工具。它旨在为研究社区提供一个标准框架,以便于分析和比较不同的数据投毒攻击及防御策略。该库支持CIFAR-10和TinyImageNet数据集,涵盖了从白盒到黑盒攻击场景,以及从特征碰撞到隐藏触发器后门等多种攻击模式。
2. 项目快速启动
环境准备
首先,确保安装必要的Python环境,然后添加项目依赖项:
pip install -r requirements.txt
接着下载TinyImageNet数据集(或确保已拥有)并正确设置路径。在learning_module.py中更新TINYIMAGENET_ROOT变量指向解压后的TinyImageNet目录。
运行基准测试
为了快速验证模型对特定中毒数据的响应,你可以执行以下命令来测试你的模型:
python test_model.py --model <模型名称> --model_path <模型文件路径>
对于更详细的控制或创建和评估毒药样本,参考how_to.md文件的详细指导。
3. 应用案例和最佳实践
创造和评估毒药样本
用户可以通过提供的脚本生成毒药样本并进行评估。例如,要测试一批特定的毒药样本对模型的影响,运行:
python poison_test.py --model <模型名称> --model_path <模型文件路径> --poisons_path <毒药样本目录>
对于全面的基准测试,包括100批毒药样本的制作和评价,执行脚本:
bash benchmark_all.sh <含有100批毒药样本的目录> [from_scratch]
其中,可选参数from_scratch用于指示从头开始训练的情况。
最佳实践
- 在开发新攻击方法时,遵循项目的结构和提供的setup pickle文件。
- 对公开的结果负责,如需登上排行榜,则应在线托管所有毒药数据集以供复现。
4. 典型生态项目
虽然本项目本身是作为一个独立的基准测试存在,其生态系统涵盖了深度学习安全的广泛研究领域,包括但不限于:
- 防御策略研究:寻找有效的方法检测和缓解数据中毒影响的项目。
- 自动化评估工具:结合自动化评估流程,使得不同攻击方案的比较更加便捷。
- 数据集增强与清洗:开发新的数据增强技术,以减少对恶意输入的敏感性。
通过参与和贡献于类似的研究和项目,社区可以共同提升模型的安全性和鲁棒性。
以上就是对data-poisoning-benchmark项目的一个基本介绍和使用指南。深入探索这个项目将帮助您更好地理解和应对数据中毒攻击在机器学习领域的挑战。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00