Kubernetes kube-state-metrics中Prometheus重复容忍度指标问题解析
问题背景
在Kubernetes监控体系中,kube-state-metrics作为关键组件,负责将Kubernetes对象状态转换为Prometheus可抓取的指标。近期在Prometheus 2.52.0及以上版本中,用户报告了一个与Pod容忍度(toleration)指标相关的警告问题。
问题现象
当Pod定义中包含重复的容忍度配置时,Prometheus会在抓取kube-state-metrics生成的指标时产生警告日志。例如,对于以下包含重复容忍度的Deployment定义:
tolerations:
- key: CriticalAddonsOnly
operator: Exists
- key: CriticalAddonsOnly
operator: Exists
Prometheus会记录如下警告:
Duplicate sample for timestamp
Error on ingesting samples with different value but same timestamp
技术分析
根本原因
-
Prometheus变更:从2.52.0版本开始,Prometheus加强了重复时间序列的检测机制,当发现相同时间戳下存在重复指标时会发出警告。
-
kube-state-metrics行为:当前kube-state-metrics会原样处理Pod定义中的所有容忍度,包括重复项,为每个容忍度生成独立的指标。
-
Kubernetes API特性:虽然Kubernetes API允许容忍度数组中存在重复项,但这在实际场景中并不合理,因为重复的容忍度不会提供额外的调度优势。
影响范围
- 使用Prometheus 2.52.0+版本监控集群
- 集群中存在定义重复容忍度的工作负载
- 使用kube-state-metrics收集Pod相关指标
解决方案
社区已提出并通过PR修复此问题,主要思路是:
-
容忍度去重:在处理Pod容忍度时,首先对容忍度数组进行去重处理,确保只保留唯一的容忍度配置。
-
指标生成优化:基于去重后的容忍度列表生成指标,避免产生重复的时间序列。
最佳实践建议
-
检查工作负载定义:审核现有工作负载的容忍度配置,移除不必要的重复项。
-
版本升级:对于使用kube-state-metrics的用户,建议升级到包含此修复的版本。
-
配置验证:考虑在CI/CD流水线中添加检查,防止部署包含重复容忍度的工作负载。
技术启示
这个案例展示了监控系统各组件间的微妙交互关系。Prometheus的严格校验机制暴露了上游配置的不规范问题,而kube-state-metrics作为中间层,需要兼顾数据准确性和系统健壮性。它也提醒我们,在Kubernetes资源配置中,即使API允许的配置,在实际生产环境中也可能不是最佳实践。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









