Longhorn项目节点驱逐多卷测试失败问题分析
问题背景
在Longhorn分布式存储系统的测试过程中,发现了一个关于节点驱逐和多卷处理的测试用例失败问题。具体表现为在特定测试步骤中,当卷被分离后,系统未能按预期自动重新附加卷并进行副本的重新调度。
问题现象
测试用例test_node_eviction_multiple_volume在master-head版本中失败,而在v1.7.2版本中表现正常。测试流程涉及多个节点的调度状态变更和卷的分离/附加操作:
- 首先在节点1上禁用调度
- 创建PV、PVC和Pod,并挂载包含2个副本的卷1
- 在节点2上设置"驱逐请求"为true并禁用调度
- 在节点1上恢复调度
- 等待卷健康状态,确认副本运行在节点1和3上
- 删除Pod以分离卷1
- 在节点2上恢复调度
- 在节点1上设置驱逐请求并禁用调度
- 预期副本应被重新调度到节点2和3上
在v1.7.2版本中,步骤9会触发卷的自动重新附加和副本重新调度,但在master-head版本中这一机制失效。
技术分析
经过排查,这个问题是由最近合并的一个修复PR引起的回归性问题。该PR原本是为了解决另一个问题(#9781),但在实现过程中意外影响了节点驱逐时的卷重新附加逻辑。
在Longhorn的架构设计中,卷的自动重新附加和副本重新调度是保证高可用性的关键机制。当节点被标记为需要驱逐时,系统应该自动将受影响卷的副本迁移到其他可用节点上。这一过程通常包括:
- 检测到节点调度状态变化
- 识别受影响卷
- 触发卷分离(如果需要)
- 重新附加卷到可用节点
- 重新调度副本
在master-head版本中,这一流程在特定条件下被中断,导致系统无法完成预期的副本迁移操作。
解决方案
开发团队已经提交并合并了修复该问题的PR。修复方案主要调整了卷重新附加和副本调度的触发条件,确保在节点驱逐场景下能够正确执行预期的操作流程。
验证结果
修复后的版本(longhorn-manager 6da14ea)已经通过了测试验证,测试用例test_node_eviction_multiple_volume在SLES amd64平台上运行成功,确认问题已解决。
总结
这个问题展示了分布式存储系统中节点管理和卷调度机制的复杂性。Longhorn团队通过快速响应和修复,确保了系统在节点驱逐场景下的可靠性。对于用户而言,理解这类问题的本质有助于更好地规划系统升级和维护策略,确保生产环境的稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00