InternLM2-7B模型微调eval阶段generate结果出现</s>问题解析
2025-06-01 15:11:30作者:董灵辛Dennis
问题现象
在使用InternLM2-7B基础模型进行微调时,在评估(eval)阶段使用generate方法生成文本时,发现几乎每个生成结果中都出现了标记。这个标记通常作为序列结束符或填充符(pad_token),正常情况下不应大量出现在生成结果中。
技术背景
在Transformer架构的语言模型中,特殊标记如起着重要作用:
- 序列结束标记:表示一个完整文本序列的结束
- 填充标记:在批量处理时用于统一序列长度
- 截断标记:用于限制生成文本的长度
可能原因分析
- 模型配置问题:可能在微调过程中修改了与生成相关的参数配置
- tokenizer设置问题:tokenizer的特殊标记设置可能不正确
- 生成参数问题:generate方法的参数设置可能导致模型频繁输出结束标记
- 训练数据问题:微调数据中可能包含大量显式的结束标记
解决方案
根据问题报告,该问题已经得到解决。虽然没有提供具体解决方案细节,但基于经验,可能的解决方向包括:
- 检查生成参数:调整generate方法的参数,如max_length、eos_token_id等
- 验证tokenizer配置:确保tokenizer正确配置了pad_token和eos_token
- 模型配置检查:确认模型配置文件中的相关设置
- 数据处理检查:审查微调数据中是否包含不合理的结束标记
最佳实践建议
- 明确设置生成参数:在使用generate方法时,明确指定eos_token_id和pad_token_id
- 监控生成过程:在eval阶段记录生成过程的中间结果
- 参数调优:根据实际需求调整temperature、top_p等影响生成质量的参数
- 版本一致性:确保训练和推理阶段使用的模型和tokenizer版本一致
总结
在大型语言模型微调和评估过程中,特殊标记的处理是需要特别注意的技术细节。合理配置模型参数和生成策略,可以有效控制生成文本的质量和格式。对于InternLM2这类大模型,建议在微调前充分理解其默认配置和生成行为,以避免类似问题的出现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871