Apache Arrow DataFusion 中 JOIN 操作投影列丢失问题分析
Apache Arrow DataFusion 是一个高性能的查询引擎,它使用 Rust 编写,能够处理大规模数据集。最近在使用过程中发现了一个关于 JOIN 操作后投影列(Projection)丢失的问题,这个问题会影响查询结果的正确性。
问题现象
在 DataFusion 中执行包含 JOIN 操作的 SQL 查询时,生成的优化后逻辑计划虽然正确包含了投影列信息,但在将逻辑计划转换回 SQL 语句(unparse)的过程中,投影列信息被意外丢弃了。这导致最终生成的 SQL 语句使用了 SELECT * 而不是预期的特定列选择。
具体表现为:
- 原始 SQL 查询:
select t1.v, t2.v from test t1, test t2 - 优化后的逻辑计划正确显示了投影列:
TableScan: test projection=[v] - 但最终生成的 SQL 却是:
SELECT * FROM "test" AS "t1" CROSS JOIN "test" AS "t2"
问题根源
经过分析,这个问题主要由两个因素共同导致:
-
投影优化规则:当最终投影列与表扫描(TableScan)中的列完全匹配时,
optimize_projections优化规则会将投影操作优化掉,认为这是冗余操作。 -
JOIN 反解析逻辑:在
unparser模块中的try_transform_to_simple_table_scan_with_filters函数处理JOIN操作时,会丢弃表扫描的投影信息,导致最终生成的SQL缺少正确的列选择。
技术影响
这个问题会导致几个潜在的技术影响:
-
查询结果不一致:虽然执行引擎内部处理是正确的,但生成的SQL与原始意图不符,可能造成混淆。
-
性能隐患:虽然当前情况下执行计划优化正确,但如果逻辑发生变化,缺少正确的投影可能导致不必要的数据传输。
-
调试困难:开发者在查看生成的SQL时无法准确了解查询的真实执行情况。
解决方案方向
解决这个问题需要考虑以下几个方面:
-
保留投影信息:即使在优化过程中投影操作被简化掉,也应该保留投影列信息用于SQL生成。
-
JOIN反解析改进:修改
unparser模块中处理JOIN操作的逻辑,确保能够正确处理和保留投影列信息。 -
投影优化规则调整:可能需要调整
optimize_projections规则,使其在优化投影操作时保留必要的元数据。
这个问题展示了查询优化器中优化规则与反解析逻辑之间需要保持一致的挑战,也提醒我们在设计优化规则时需要考虑后续的查询表示需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00