Apache DataFusion 中 Join 操作投影列丢失问题分析
问题背景
在 Apache DataFusion 项目中,用户发现 SQL 查询在解析和优化过程中存在一个关于列投影(Projection)的特殊问题。具体表现为:当执行包含 Join 操作的查询时,最终生成的 SQL 语句会丢失原始查询中指定的列投影信息,转而输出 SELECT * 形式的查询。
问题复现
考虑以下示例查询:
SELECT t1.v, t2.v FROM test t1, test t2
经过 DataFusion 处理后的逻辑计划显示:
Projection: t1.v, t2.v
Cross Join:
SubqueryAlias: t1
TableScan: test
SubqueryAlias: t2
TableScan: test
优化后的计划变为:
Cross Join:
SubqueryAlias: t1
TableScan: test projection=[v]
SubqueryAlias: t2
TableScan: test projection=[v]
但最终生成的 SQL 却丢失了投影信息:
SELECT * FROM "test" AS "t1" CROSS JOIN "test" AS "t2"
问题根源分析
经过深入分析,这个问题主要由两个因素共同导致:
-
投影优化规则的影响:当最终投影列与表扫描(TableScan)中的列完全匹配时,
optimize_projections优化规则会将投影操作优化掉。 -
Join 反解析逻辑:在
unparser模块中的try_transform_to_simple_table_scan_with_filters函数在处理 Join 操作时,会丢弃表扫描的投影信息。
技术细节
在 DataFusion 的查询处理流程中,SQL 语句会经历以下几个关键阶段:
- 解析阶段:将 SQL 文本解析为逻辑计划
- 优化阶段:应用各种优化规则
- 反解析阶段:将优化后的逻辑计划转换回 SQL 文本
问题主要出现在第三阶段。当处理 Join 操作时,反解析器会尝试将表扫描转换为简单的表扫描加过滤条件的形式,但在这个过程中,投影信息被意外丢弃。
解决方案建议
要解决这个问题,可以考虑以下几种方法:
- 修改 Join 反解析器:确保在处理 Join 操作时保留投影信息
- 调整优化规则:修改
optimize_projections规则,使其在特定情况下保留投影信息 - 增加投影信息传递:在反解析阶段,从更高层级的计划节点获取投影信息
从实现复杂度和影响范围考虑,第一种方案可能是最直接有效的解决方案。
影响评估
这个问题会影响以下场景:
- 使用 DataFusion 进行 SQL 查询重写
- 需要将优化后的计划转换回 SQL 的场景
- 需要精确控制输出列的应用程序
虽然不影响查询执行的正确性,但会影响生成的 SQL 的可读性和精确性。
总结
DataFusion 中 Join 操作的投影列丢失问题揭示了查询优化与反解析过程中信息传递的复杂性。理解这一问题有助于开发者更好地使用 DataFusion 的 SQL 处理能力,特别是在需要精确控制输出 SQL 格式的场景中。修复这一问题将提高 DataFusion 在 SQL 转换场景中的可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00