AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理容器镜像
2025-07-06 09:53:08作者:俞予舒Fleming
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速在AWS云上部署深度学习工作负载。
本次发布的v1.28版本主要针对TensorFlow推理场景,提供了基于ARM64架构的容器镜像。该镜像搭载了TensorFlow 2.18.0版本,专门为在EC2实例上运行推理任务而优化。
镜像技术细节
这个ARM64架构的TensorFlow推理镜像具有以下技术特点:
-
基础环境:
- 基于Ubuntu 20.04操作系统
- 使用Python 3.10作为默认Python环境
- 专门为EC2实例优化配置
-
核心组件:
- TensorFlow Serving API 2.18.0
- 关键Python包包括:
- PyYAML 6.0.2(用于配置文件处理)
- boto3 1.36.18(AWS SDK for Python)
- protobuf 4.25.6(Google Protocol Buffers)
- Cython 0.29.37(用于加速Python代码)
-
系统依赖:
- 包含了必要的ARM64架构系统库,如libgcc和libstdc++的开发版本
- 预装了emacs编辑器及其相关组件
适用场景
这个镜像特别适合以下应用场景:
-
ARM架构服务器部署:针对基于AWS Graviton处理器的EC2实例优化,能够充分发挥ARM架构的性能优势。
-
生产环境推理服务:预装了TensorFlow Serving API,可以快速部署为REST或gRPC服务。
-
云端AI应用:内置AWS CLI和boto3等工具,方便与AWS其他服务集成。
版本兼容性
该镜像属于TensorFlow 2.x系列,保持了与之前2.x版本的API兼容性。用户可以将现有的TensorFlow 2.x模型直接部署到这个环境中,无需额外修改。
使用建议
对于需要在ARM架构上部署TensorFlow模型的开发者,建议:
-
直接从AWS ECR仓库拉取该镜像,避免自行构建的复杂性。
-
利用预装的AWS工具链简化云上部署流程。
-
根据实际需求调整容器资源配置,特别是对于计算密集型推理任务。
这个版本的发布进一步丰富了AWS在ARM架构上的深度学习支持,为用户提供了更多部署选择,特别是在追求性价比的场景下,ARM架构的EC2实例配合这个优化镜像能够提供出色的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.69 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
656
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
657