MTEB项目中Memotion图像文本检索数据集清洗逻辑优化分析
2025-07-01 18:39:08作者:韦蓉瑛
在MTEB(Massive Text Embedding Benchmark)项目的图像文本检索任务实现中,开发团队发现MemotionI2TRetrieval数据集存在一些需要优化的数据处理逻辑。本文将深入分析这一问题及其解决方案。
问题背景
Memotion数据集是一个包含社交媒体表情包(meme)的多模态数据集,其中包含图像及其对应的文本描述。在构建检索任务时,原始实现中存在一个潜在的数据质量问题:部分样本的text_corrected字段为空值(null)。这些空值样本本应被过滤,但原始实现的处理方式较为隐晦。
原始实现分析
原始代码通过硬编码索引的方式排除了4个特定位置的样本:
shared_corpus = shared_corpus.select(
[i for i in range(len(shared_corpus)) if i not in [4578, 6781, 6784, 6786]]
)
这种方式存在几个问题:
- 可读性差:无法直观理解为何要排除这些特定索引
- 可维护性低:如果数据集更新导致空值位置变化,代码需要同步修改
- 意图不明确:没有直接体现"过滤空文本"的业务逻辑
优化方案
改进后的实现采用了更清晰的过滤逻辑:
split_datasets = {}
for split in dataset_splits:
split_datasets[split] = dataset[split].filter(
lambda example: example["text_corrected"] != None
)
这种改进带来了以下优势:
- 语义明确:直接表达了"过滤空文本"的意图
- 健壮性强:不依赖固定索引,适应数据集变化
- 可扩展性好:便于添加其他过滤条件
技术影响
经测试验证,这一修改不会影响基准测试结果,因为:
- 空值样本数量极少(仅4个)
- 原始实现已实质排除了这些样本
- 评估指标对这些微小变化不敏感
最佳实践建议
在多模态数据处理中,建议:
- 显式处理缺失值,避免隐式逻辑
- 优先使用语义化过滤条件而非硬编码
- 对数据质量进行充分验证
- 保持数据处理逻辑与业务需求一致
这一优化体现了MTEB项目对代码质量和数据质量的持续改进,为其他多模态检索任务的数据处理提供了良好范例。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869