MTEB项目中HatefulMemes检索任务的数据去重问题分析
2025-07-01 07:37:05作者:裴麒琰
背景介绍
MTEB(Massive Text Embedding Benchmark)是一个用于评估大规模文本嵌入模型的基准测试项目。在其图像检索任务中,HatefulMemes数据集被用作重要的评估基准之一。然而,该数据集在应用过程中暴露出了一些数据质量问题,特别是重复数据问题,这直接影响模型评估的准确性和计算效率。
问题描述
HatefulMemes数据集存在两种主要的重复数据问题:
-
完全重复样本:数据集包含大量完全相同的图像和文本组合。例如,"meanwhile at the club"这一文本与对应图像在数据集中多次出现。这种重复会导致计算资源的浪费,因为相同的图像和文本会被重复编码多次。
-
部分重复样本:这是HatefulMemes数据集的一个设计特点,即相同的文本会与不同的图像配对,相同的图像也会与不同的文本配对。这种对抗性构造是数据集难度的重要来源,但在检索任务评估中带来了挑战。
技术影响分析
在当前的实现中,代码假设每个图像或文本只有一个匹配项。这种假设与数据集的实际情况不符,会导致以下问题:
- 评估指标计算不准确,因为忽略了多匹配情况
- 无法真实反映模型处理对抗性样本的能力
- 计算资源浪费在重复数据的处理上
解决方案探讨
针对这些问题,我们提出两种可能的解决方案:
方案一:基于文本的去重
这种方法仅对完全相同的文本进行去重处理:
- 优点:实现简单,能消除完全重复的样本
- 缺点:会保留部分重复图像(相同图像但不同文本的情况)
方案二:多标签处理与图像去重
这种方法更为全面:
- 首先对所有完全相同的图像进行去重
- 对于每个图像,保留所有相关的文本作为多标签
- 在评估时考虑所有相关匹配
这种方案能更好地保留数据集的对抗性特点,同时消除无意义的完全重复。
实现建议
在技术实现上,可以考虑以下步骤:
- 使用图像哈希技术识别并去除完全相同的图像
- 构建图像到多个文本的映射关系
- 修改评估代码以支持多匹配评估
- 将清理后的数据集重新发布
这种处理方式既能保持数据集的挑战性,又能提高评估的效率和准确性,是更为推荐的解决方案。
总结
HatefulMemes数据集在MTEB项目中的应用揭示了数据质量对评估任务的重要性。通过合理的去重和多标签处理,我们可以在保留数据集核心价值的同时,提高评估的效率和准确性。这一问题的解决也为处理类似的多模态数据集提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19