TorchMetrics中Pearson相关系数计算的聚合问题分析与修复
2025-07-03 20:47:50作者:廉皓灿Ida
问题背景
在机器学习评估指标库TorchMetrics中,Pearson相关系数的计算实现存在两个关键问题:
- 状态修改问题:
_final_aggregation函数在多设备环境下会原地修改输入状态,导致后续计算出现不准确结果 - 数值稳定性问题:当某些设备没有数据时,计算过程中会出现NaN值
问题分析
Pearson相关系数的多设备聚合计算需要合并来自不同设备的统计量,包括均值、方差和协方差等。原实现存在以下技术缺陷:
- 原地修改问题:函数直接修改输入张量,这在多设备分布式训练场景下会导致后续计算使用已被修改的状态
- 数值稳定性:当两个设备的样本数n1和n2都为0时,除法运算会产生NaN,而实际上这些位置的统计量应该保持为0
- 算法复杂度:原实现使用了较为复杂的计算公式,增加了理解和维护难度
解决方案
基于算法文献和数值稳定性考虑,我们提出以下改进方案:
def _final_aggregation(
means_x: torch.Tensor,
means_y: torch.Tensor,
vars_x: torch.Tensor,
vars_y: torch.Tensor,
corrs_xy: torch.Tensor,
nbs: torch.Tensor,
eps: float = 1e-10,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""聚合来自多个设备的统计量"""
if len(means_x) == 1:
return means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0]
mx1, my1, vx1, vy1, cxy1, n1 = means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0]
for i in range(1, len(means_x)):
mx2, my2, vx2, vy2, cxy2, n2 = means_x[i], means_y[i], vars_x[i], vars_y[i], corrs_xy[i], nbs[i]
# 处理零样本情况
nb = torch.where(torch.logical_or(n1, n2), n1 + n2, eps)
# 计算合并均值
mean_x = (n1 * mx1 + n2 * mx2) / nb
mean_y = (n1 * my1 + n2 * my2) / nb
# 计算合并方差和协方差
n12_b = n1 * n2 / nb
delta_x = mx2 - mx1
delta_y = my2 - my1
var_x = vx1 + vx2 + n12_b * delta_x ** 2
var_y = vy1 + vy2 + n12_b * delta_y ** 2
corr_xy = cxy1 + cxy2 + n12_b * delta_x * delta_y
mx1, my1, vx1, vy1, cxy1, n1 = mean_x, mean_y, var_x, var_y, corr_xy, nb
return mean_x, mean_y, var_x, var_y, corr_xy, nb
技术优势
- 算法正确性:基于可靠的并行统计算法文献实现,确保数学正确性
- 数值稳定性:通过eps参数处理零样本情况,避免NaN值产生
- 性能优化:简化计算公式,提高计算效率
- 可维护性:代码结构更清晰,便于理解和维护
实际影响
该修复对以下场景尤为重要:
- 分布式训练:确保在多GPU/多节点环境下指标计算的准确性
- 稀疏数据:处理某些设备可能没有数据的情况
- 长期训练:避免状态污染导致的指标漂移
结论
TorchMetrics中的Pearson相关系数计算经过此次修复,在正确性、稳定性和性能方面都得到了显著提升。这一改进特别有利于大规模分布式训练场景下的模型评估工作,确保了评估指标的准确性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869