LlamaIndex项目中如何正确配置自定义LLM和Embedding模型
2025-05-02 11:07:46作者:蔡怀权
在基于LlamaIndex构建RAG应用时,开发者经常会遇到需要替换默认模型的情况。本文将以一个典型场景为例,详细介绍如何正确配置自定义的大语言模型(LLM)和文本嵌入(Embedding)模型。
问题背景
当开发者尝试将LlamaIndex的默认OpenAI模型替换为DeepSeek模型时,即使设置了全局LLM参数,系统仍然会调用OpenAI API导致配额错误。这实际上是因为LlamaIndex的工作机制涉及两种不同类型的模型:
- 大语言模型(LLM):负责生成自然语言响应
- 嵌入模型(Embedding Model):负责将文档转换为向量表示
解决方案
1. 配置大语言模型
首先需要正确初始化并设置自定义的LLM。以DeepSeek为例:
from llama_index.llms.deepseek import DeepSeek
from llama_index.core import Settings
llm = DeepSeek(model="deepseek-chat", api_key="your_api_key")
Settings.llm = llm # 设置为全局LLM
2. 配置嵌入模型
仅仅设置LLM是不够的,还必须配置嵌入模型。LlamaIndex提供了多种选择:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# 使用HuggingFace的嵌入模型
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
3. 完整示例代码
结合上述配置,完整的文档索引和查询流程如下:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.deepseek import DeepSeek
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
# 配置模型
llm = DeepSeek(model="deepseek-chat", api_key="your_api_key")
Settings.llm = llm
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
# 加载文档并创建索引
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
# 执行查询
query_engine = index.as_query_engine()
response = query_engine.query("查询问题")
print(response)
技术原理
LlamaIndex的文档处理流程分为两个关键阶段:
- 索引构建阶段:使用嵌入模型将文档转换为向量表示,存储在向量数据库中
- 查询阶段:先使用嵌入模型将查询转换为向量,检索相关文档,再使用LLM生成最终响应
这种两阶段架构使得LlamaIndex能够高效处理大规模文档,但也要求开发者必须同时配置两种模型才能正常工作。
最佳实践
- 对于嵌入模型,建议选择适合目标语言的小型高效模型
- 在生产环境中,建议将模型配置集中管理,便于维护
- 测试阶段可以先使用本地模型(如Ollama)减少API调用成本
- 注意不同模型对硬件资源的需求差异
通过正确理解LlamaIndex的模型架构并合理配置,开发者可以灵活地构建适合自己需求的RAG应用,而不受限于特定的模型提供商。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K