LlamaIndex项目中如何正确配置自定义LLM和Embedding模型
2025-05-02 07:22:07作者:蔡怀权
在基于LlamaIndex构建RAG应用时,开发者经常会遇到需要替换默认模型的情况。本文将以一个典型场景为例,详细介绍如何正确配置自定义的大语言模型(LLM)和文本嵌入(Embedding)模型。
问题背景
当开发者尝试将LlamaIndex的默认OpenAI模型替换为DeepSeek模型时,即使设置了全局LLM参数,系统仍然会调用OpenAI API导致配额错误。这实际上是因为LlamaIndex的工作机制涉及两种不同类型的模型:
- 大语言模型(LLM):负责生成自然语言响应
- 嵌入模型(Embedding Model):负责将文档转换为向量表示
解决方案
1. 配置大语言模型
首先需要正确初始化并设置自定义的LLM。以DeepSeek为例:
from llama_index.llms.deepseek import DeepSeek
from llama_index.core import Settings
llm = DeepSeek(model="deepseek-chat", api_key="your_api_key")
Settings.llm = llm # 设置为全局LLM
2. 配置嵌入模型
仅仅设置LLM是不够的,还必须配置嵌入模型。LlamaIndex提供了多种选择:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# 使用HuggingFace的嵌入模型
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
3. 完整示例代码
结合上述配置,完整的文档索引和查询流程如下:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.deepseek import DeepSeek
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
# 配置模型
llm = DeepSeek(model="deepseek-chat", api_key="your_api_key")
Settings.llm = llm
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
# 加载文档并创建索引
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
# 执行查询
query_engine = index.as_query_engine()
response = query_engine.query("查询问题")
print(response)
技术原理
LlamaIndex的文档处理流程分为两个关键阶段:
- 索引构建阶段:使用嵌入模型将文档转换为向量表示,存储在向量数据库中
- 查询阶段:先使用嵌入模型将查询转换为向量,检索相关文档,再使用LLM生成最终响应
这种两阶段架构使得LlamaIndex能够高效处理大规模文档,但也要求开发者必须同时配置两种模型才能正常工作。
最佳实践
- 对于嵌入模型,建议选择适合目标语言的小型高效模型
- 在生产环境中,建议将模型配置集中管理,便于维护
- 测试阶段可以先使用本地模型(如Ollama)减少API调用成本
- 注意不同模型对硬件资源的需求差异
通过正确理解LlamaIndex的模型架构并合理配置,开发者可以灵活地构建适合自己需求的RAG应用,而不受限于特定的模型提供商。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-R1-0528DeepSeek-R1-0528 是 DeepSeek R1 系列的小版本升级,通过增加计算资源和后训练算法优化,显著提升推理深度与推理能力,整体性能接近行业领先模型(如 O3、Gemini 2.5 Pro)Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TSX030deepflow
DeepFlow 是云杉网络 (opens new window)开发的一款可观测性产品,旨在为复杂的云基础设施及云原生应用提供深度可观测性。DeepFlow 基于 eBPF 实现了应用性能指标、分布式追踪、持续性能剖析等观测信号的零侵扰(Zero Code)采集,并结合智能标签(SmartEncoding)技术实现了所有观测信号的全栈(Full Stack)关联和高效存取。使用 DeepFlow,可以让云原生应用自动具有深度可观测性,从而消除开发者不断插桩的沉重负担,并为 DevOps/SRE 团队提供从代码到基础设施的监控及诊断能力。Go00
热门内容推荐
1 freeCodeCamp课程中meta元素的教学优化建议2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp排序可视化项目中Bubble Sort算法的实现问题分析4 freeCodeCamp课程中JavaScript变量提升机制的修正说明5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp贷款资格检查器中的参数验证问题分析7 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议8 freeCodeCamp项目中从ts-node迁移到tsx的技术决策分析9 freeCodeCamp 前端开发实验室:排列生成器代码规范优化10 freeCodeCamp课程中英语学习模块的提示信息优化建议
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
427
321

React Native鸿蒙化仓库
C++
92
163

openGauss kernel ~ openGauss is an open source relational database management system
C++
48
116

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
269
425

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
29
34

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
316
30

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
342
213

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
87
240

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
86
62