AWS Deep Learning Containers发布PyTorch 2.6.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速在AWS云环境中部署深度学习应用。这些容器镜像支持多种深度学习框架,包括TensorFlow、PyTorch、MXNet等,并且针对不同的计算环境(如CPU、GPU)进行了优化。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.6.0版本的推理镜像,这些镜像基于Ubuntu 22.04操作系统,支持Python 3.12环境,并针对EC2实例进行了优化。新版本镜像包含了PyTorch生态系统中的核心组件,如torch、torchvision、torchaudio等,以及常用的数据处理和科学计算库,为深度学习推理任务提供了完整的工具链。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:适用于没有GPU加速的计算环境,镜像标签为
pytorch-inference:2.6.0-cpu-py312-ubuntu22.04-ec2-v1.2
。该版本包含了PyTorch 2.6.0的CPU版本,以及NumPy、SciPy、OpenCV等常用科学计算库。 -
GPU版本:针对CUDA 12.4环境优化,镜像标签为
pytorch-inference:2.6.0-gpu-py312-cu124-ubuntu22.04-ec2-v1.2
。除了包含CPU版本的所有功能外,还支持GPU加速计算,并集成了CUDA和cuDNN等必要的GPU计算库。
关键技术组件
两个版本的镜像都包含了PyTorch生态系统的核心组件:
- PyTorch 2.6.0:当前最新的稳定版本,提供了改进的性能和稳定性
- TorchVision 0.21.0:计算机视觉相关的模型和转换工具
- TorchAudio 2.6.0:音频处理相关的功能和模型
- TorchServe 0.12.0:PyTorch模型的部署和服务框架
- Torch Model Archiver 0.12.0:用于打包PyTorch模型的工具
此外,镜像中还预装了常用的Python库,如:
- NumPy 2.2.3:基础科学计算库
- SciPy 1.15.2:高级科学计算功能
- OpenCV 4.11.0:计算机视觉库
- Pillow 11.1.0:图像处理库
- Pandas 2.2.3(仅GPU版本):数据分析库
系统级优化
这些镜像基于Ubuntu 22.04 LTS构建,并针对EC2实例环境进行了优化:
-
编译器支持:包含了GCC 11和相关的开发库,确保代码能够充分利用现代CPU架构的特性。
-
数学库优化:集成了Intel MKL 2025.0.1数学核心库,为线性代数运算提供硬件加速。
-
构建工具:预装了Ninja构建系统(1.11.1.1版本),加速PyTorch扩展的编译过程。
-
CUDA支持(GPU版本):完整支持CUDA 12.4计算平台,包含cuBLAS和cuDNN等加速库。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境,无需手动配置复杂的依赖关系。
-
推理服务:使用TorchServe框架构建可扩展的模型推理服务。
-
基准测试:在不同硬件配置上评估模型性能,得益于标准化的环境配置。
-
开发原型:快速搭建开发环境,专注于模型实现而非环境配置。
总结
AWS Deep Learning Containers提供的这些PyTorch 2.6.0推理镜像,通过预配置优化的软件栈,显著降低了深度学习应用部署的复杂度。无论是需要CPU还是GPU加速的环境,开发者都可以快速获得一个包含所有必要组件的工作环境,从而将更多精力投入到模型优化和业务逻辑开发中。这些镜像的发布进一步丰富了AWS云上深度学习工具链,为AI应用的开发和部署提供了更多便利。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









