AWS Deep Learning Containers发布PyTorch 2.6.0推理专用镜像
2025-07-06 02:32:31作者:袁立春Spencer
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,可以直接在AWS云平台上运行。这些容器镜像包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署和运行深度学习模型,而无需花费大量时间配置环境。
近日,AWS Deep Learning Containers项目发布了针对PyTorch 2.6.0框架的推理专用镜像更新。这些镜像基于Ubuntu 22.04操作系统,支持Python 3.12环境,为机器学习推理任务提供了开箱即用的解决方案。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
- CPU版本:适用于不需要GPU加速的推理场景,镜像标识为
2.6.0-cpu-py312-ubuntu22.04-sagemaker - GPU版本:针对CUDA 12.4环境优化,支持NVIDIA GPU加速,镜像标识为
2.6.0-gpu-py312-cu124-ubuntu22.04-sagemaker
两个版本都预装了PyTorch 2.6.0核心框架及其相关组件,包括torchaudio 2.6.0和torchvision 0.21.0,确保用户能够获得完整的PyTorch生态系统支持。
关键技术组件
这些镜像中包含了丰富且经过精心挑选的软件包组合:
核心深度学习组件
- PyTorch 2.6.0:当前稳定版本,针对推理任务进行了优化
- torchaudio 2.6.0:音频处理专用库
- torchvision 0.21.0:计算机视觉专用库
- torchserve 0.12.0:PyTorch模型服务框架
- torch-model-archiver 0.12.0:模型打包工具
科学计算与数据处理
- NumPy 2.2.3:基础数值计算库
- pandas 2.2.3:数据分析和处理工具
- scikit-learn 1.6.1:机器学习算法库
- scipy 1.15.1:科学计算工具集
- OpenCV 4.11.0:计算机视觉库
系统工具与开发环境
- CUDA 12.4(仅GPU版本):NVIDIA GPU计算平台
- MKL 2025.0.1:Intel数学核心库
- Cython 3.0.12:Python C扩展工具
- Ninja 1.11.1.1:构建系统
镜像特点与优势
- 环境一致性:所有依赖项版本固定,确保在不同环境中运行结果一致
- 性能优化:针对AWS基础设施进行了专门优化,包括CPU指令集和GPU计算优化
- 即用性:预装了常用工具如AWS CLI、boto3等,方便与AWS服务集成
- 安全性:基于Ubuntu 22.04 LTS,获得长期安全更新支持
- 兼容性:支持Python 3.12最新特性,同时保持向后兼容
适用场景
这些PyTorch推理镜像特别适合以下应用场景:
- 生产环境模型部署
- 大规模批量推理任务
- 实时预测服务
- 模型性能基准测试
- 持续集成/持续部署(CI/CD)流水线
总结
AWS Deep Learning Containers提供的这些PyTorch 2.6.0推理镜像,为开发者提供了高效、稳定的模型部署解决方案。通过使用这些预构建的容器镜像,团队可以大幅减少环境配置时间,将更多精力集中在模型开发和业务逻辑实现上。特别是对于需要快速迭代和部署的AI应用场景,这些优化过的容器镜像能够显著提升开发效率和运行性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218