async-profiler 分配性能分析中的原生帧过滤优化
2025-05-28 22:37:12作者:吴年前Myrtle
在性能分析工具async-profiler的最新更新中,针对分配分析(Allocation Profiling)功能进行了一项重要改进——原生帧(native frames)的智能过滤机制。这项改进显著提升了分配分析结果的清晰度和实用性。
背景与问题
在Java应用程序中,对象分配不仅发生在Java代码层面,有时也会在JVM运行时内部进行。传统的分配分析通常只显示Java调用栈,而忽略了这些原生层面的分配路径。虽然可以通过添加cstack
选项来包含原生调用栈,但这会导致分析结果变得杂乱无章。
主要问题表现在:
- 分析结果中充斥着大量无意义的profiler自身调用栈
- JVM内部重复出现的公共分配路径帧占据了大量视觉空间
- 对于锁竞争事件,原生调用栈通常不提供有价值信息
解决方案
async-profiler的最新版本实现了以下改进:
-
默认启用原生栈追踪:现在分配分析会自动包含原生调用栈信息,无需额外配置。
-
智能过滤机制:
- 自动移除属于JVM公共分配路径的原生帧
- 过滤掉async-profiler自身的调用栈
- 针对锁竞争事件不显示原生调用栈
-
优化后的可视化:火焰图中现在只保留真正有助于区分JVM分配和Java分配的原生帧。
技术实现细节
这项改进的核心在于识别和过滤特定模式的原生调用栈。async-profiler现在能够:
- 识别JVM内部的对象分配路径,如内存分配器的通用调用链
- 区分profiler自身的采样逻辑与应用程序的实际分配路径
- 判断何时原生帧真正提供了有价值的信息
实际效果
优化后的分配分析结果更加清晰和聚焦。例如:
- 现在可以明确看到哪些对象是在JNI调用或JVM内部分配的
- 火焰图中不再被重复的JVM内部帧占据大量空间
- 分析结果更直接地反映了应用程序的实际分配模式
对开发者的意义
这项改进使得:
- 性能分析更加准确:不再遗漏原生层面的分配热点
- 结果解读更加直观:减少了无关信息的干扰
- 问题诊断更加高效:能够快速定位真正的分配瓶颈
总结
async-profiler对分配分析中原生帧的智能过滤是一项重要的可用性改进,它既保留了完整调用栈信息的价值,又避免了无关细节的干扰。这项改进使得分配性能分析结果更加专业和实用,帮助开发者更有效地识别和解决内存分配相关的性能问题。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- QQwen3-235B-A22B-Instruct-2507Qwen3-235B-A22B-Instruct-2507是一款强大的开源大语言模型,拥有2350亿参数,其中220亿参数处于激活状态。它在指令遵循、逻辑推理、文本理解、数学、科学、编程和工具使用等方面表现出色,尤其在长尾知识覆盖和多语言任务上显著提升。模型支持256K长上下文理解,生成内容更符合用户偏好,适用于主观和开放式任务。在多项基准测试中,它在知识、推理、编码、对齐和代理任务上超越同类模型。部署灵活,支持多种框架如Hugging Face transformers、vLLM和SGLang,适用于本地和云端应用。通过Qwen-Agent工具,能充分发挥其代理能力,简化复杂任务处理。最佳实践推荐使用Temperature=0.7、TopP=0.8等参数设置,以获得最优性能。00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript044GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python020
热门内容推荐
1 freeCodeCamp博客页面工作坊中的断言方法优化建议2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
686
457

React Native鸿蒙化仓库
C++
139
223

openGauss kernel ~ openGauss is an open source relational database management system
C++
98
158

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
52
15

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
114
255

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
705
97

💖国内首个国密前后分离快速开发平台💖《免费商用》,基于开源技术栈精心打造,融合Vue3+AntDesignVue4+Vite5+SpringBoot3+Mp+HuTool+Sa-Token。平台内置国密加解密功能,保障前后端数据传输安全;全面支持国产化环境,适配多种机型、中间件及数据库。特别推荐:插件提供工作流、多租户、多数据源、即时通讯等高级插件,灵活接入,让您的项目开发如虎添翼。
Java
179
23

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
363
355

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
121
84

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
523
44