async-profiler 分配性能分析中的原生帧过滤优化
2025-05-28 04:35:53作者:吴年前Myrtle
在性能分析工具async-profiler的最新更新中,针对分配分析(Allocation Profiling)功能进行了一项重要改进——原生帧(native frames)的智能过滤机制。这项改进显著提升了分配分析结果的清晰度和实用性。
背景与问题
在Java应用程序中,对象分配不仅发生在Java代码层面,有时也会在JVM运行时内部进行。传统的分配分析通常只显示Java调用栈,而忽略了这些原生层面的分配路径。虽然可以通过添加cstack选项来包含原生调用栈,但这会导致分析结果变得杂乱无章。
主要问题表现在:
- 分析结果中充斥着大量无意义的profiler自身调用栈
- JVM内部重复出现的公共分配路径帧占据了大量视觉空间
- 对于锁竞争事件,原生调用栈通常不提供有价值信息
解决方案
async-profiler的最新版本实现了以下改进:
-
默认启用原生栈追踪:现在分配分析会自动包含原生调用栈信息,无需额外配置。
-
智能过滤机制:
- 自动移除属于JVM公共分配路径的原生帧
- 过滤掉async-profiler自身的调用栈
- 针对锁竞争事件不显示原生调用栈
-
优化后的可视化:火焰图中现在只保留真正有助于区分JVM分配和Java分配的原生帧。
技术实现细节
这项改进的核心在于识别和过滤特定模式的原生调用栈。async-profiler现在能够:
- 识别JVM内部的对象分配路径,如内存分配器的通用调用链
- 区分profiler自身的采样逻辑与应用程序的实际分配路径
- 判断何时原生帧真正提供了有价值的信息
实际效果
优化后的分配分析结果更加清晰和聚焦。例如:
- 现在可以明确看到哪些对象是在JNI调用或JVM内部分配的
- 火焰图中不再被重复的JVM内部帧占据大量空间
- 分析结果更直接地反映了应用程序的实际分配模式
对开发者的意义
这项改进使得:
- 性能分析更加准确:不再遗漏原生层面的分配热点
- 结果解读更加直观:减少了无关信息的干扰
- 问题诊断更加高效:能够快速定位真正的分配瓶颈
总结
async-profiler对分配分析中原生帧的智能过滤是一项重要的可用性改进,它既保留了完整调用栈信息的价值,又避免了无关细节的干扰。这项改进使得分配性能分析结果更加专业和实用,帮助开发者更有效地识别和解决内存分配相关的性能问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1