async-profiler 分配性能分析中的原生帧过滤优化
2025-05-28 14:52:46作者:吴年前Myrtle
在性能分析工具async-profiler的最新更新中,针对分配分析(Allocation Profiling)功能进行了一项重要改进——原生帧(native frames)的智能过滤机制。这项改进显著提升了分配分析结果的清晰度和实用性。
背景与问题
在Java应用程序中,对象分配不仅发生在Java代码层面,有时也会在JVM运行时内部进行。传统的分配分析通常只显示Java调用栈,而忽略了这些原生层面的分配路径。虽然可以通过添加cstack
选项来包含原生调用栈,但这会导致分析结果变得杂乱无章。
主要问题表现在:
- 分析结果中充斥着大量无意义的profiler自身调用栈
- JVM内部重复出现的公共分配路径帧占据了大量视觉空间
- 对于锁竞争事件,原生调用栈通常不提供有价值信息
解决方案
async-profiler的最新版本实现了以下改进:
-
默认启用原生栈追踪:现在分配分析会自动包含原生调用栈信息,无需额外配置。
-
智能过滤机制:
- 自动移除属于JVM公共分配路径的原生帧
- 过滤掉async-profiler自身的调用栈
- 针对锁竞争事件不显示原生调用栈
-
优化后的可视化:火焰图中现在只保留真正有助于区分JVM分配和Java分配的原生帧。
技术实现细节
这项改进的核心在于识别和过滤特定模式的原生调用栈。async-profiler现在能够:
- 识别JVM内部的对象分配路径,如内存分配器的通用调用链
- 区分profiler自身的采样逻辑与应用程序的实际分配路径
- 判断何时原生帧真正提供了有价值的信息
实际效果
优化后的分配分析结果更加清晰和聚焦。例如:
- 现在可以明确看到哪些对象是在JNI调用或JVM内部分配的
- 火焰图中不再被重复的JVM内部帧占据大量空间
- 分析结果更直接地反映了应用程序的实际分配模式
对开发者的意义
这项改进使得:
- 性能分析更加准确:不再遗漏原生层面的分配热点
- 结果解读更加直观:减少了无关信息的干扰
- 问题诊断更加高效:能够快速定位真正的分配瓶颈
总结
async-profiler对分配分析中原生帧的智能过滤是一项重要的可用性改进,它既保留了完整调用栈信息的价值,又避免了无关细节的干扰。这项改进使得分配性能分析结果更加专业和实用,帮助开发者更有效地识别和解决内存分配相关的性能问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K