DeepLabCut训练过程中RMSE指标为NaN的问题分析与解决方案
问题现象
在使用DeepLabCut进行姿态估计模型训练时,部分用户遇到了一个特殊现象:在每10个epoch的性能评估阶段,控制台输出显示metrics/test.rmse和metrics/test.rmse_pcutoff指标值为NaN(非数字)。与此同时,其他指标如metrics/test.mAP和metrics/test.mAR显示为0.000,而metrics/test.rmse_detections则显示正常数值。
问题背景
DeepLabCut是一个基于深度学习的开源姿态估计工具包,广泛应用于动物行为分析研究。在模型训练过程中,系统会定期评估模型在验证集上的表现,输出包括RMSE(均方根误差)在内的多个性能指标。正常情况下,这些指标应该显示具体的数值,而非NaN。
可能原因分析
-
数据标注问题:标注数据可能存在异常,如某些关键点未被正确标注或标注位置超出图像范围。
-
验证集样本不足:当验证集样本量过少时,可能导致某些指标无法计算。
-
PyCOCO工具包缺失:DeepLabCut依赖PyCOCO工具包进行某些指标计算,若未正确安装可能导致计算异常。
-
训练配置不当:过高的学习率或过小的批量大小可能导致模型训练不稳定。
-
单视频训练限制:有用户反馈当仅使用单个视频进行训练时出现此问题,而使用多个视频训练则正常。
解决方案
-
检查数据标注质量:
- 使用DeepLabCut内置的
check_labels功能验证标注准确性 - 确保所有关键点都被正确标注且位置合理
- 使用DeepLabCut内置的
-
增加训练数据量:
- 使用多个视频源进行训练
- 确保训练集和验证集都有足够数量的样本
- 有用户报告使用至少6个视频和数百帧图像后问题消失
-
验证依赖包安装:
- 确认PyCOCO工具包已正确安装
- 检查所有DeepLabCut依赖项是否完整
-
调整训练参数:
- 适当降低学习率
- 增加批量大小(batch size)
- 监控训练损失曲线,确保其正常下降
-
环境配置检查:
- 对于M系列Mac用户,确保使用专为Apple芯片优化的环境配置
- 验证CUDA/cuDNN版本兼容性(如使用GPU)
问题排查流程
当遇到RMSE指标为NaN的情况时,建议按照以下步骤进行排查:
- 首先检查训练损失曲线是否正常收敛
- 运行模型推理,观察预测结果是否合理
- 检查验证集样本数量和分布
- 验证PyCOCO工具包功能是否正常
- 尝试增加训练数据多样性
- 调整训练超参数后重新训练
总结
DeepLabCut训练过程中出现RMSE指标为NaN的情况通常与数据质量或训练配置相关,而非软件本身的缺陷。通过系统性的检查和调整,大多数情况下可以解决这一问题。对于研究用户而言,确保训练数据的质量和数量是获得可靠模型的关键。当遇到类似问题时,建议从最简单的数据检查开始,逐步排查可能的原因,最终找到适合特定实验设置的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00