DeepLabCut训练过程中RMSE指标为NaN的问题分析与解决方案
问题现象
在使用DeepLabCut进行姿态估计模型训练时,部分用户遇到了一个特殊现象:在每10个epoch的性能评估阶段,控制台输出显示metrics/test.rmse和metrics/test.rmse_pcutoff指标值为NaN(非数字)。与此同时,其他指标如metrics/test.mAP和metrics/test.mAR显示为0.000,而metrics/test.rmse_detections则显示正常数值。
问题背景
DeepLabCut是一个基于深度学习的开源姿态估计工具包,广泛应用于动物行为分析研究。在模型训练过程中,系统会定期评估模型在验证集上的表现,输出包括RMSE(均方根误差)在内的多个性能指标。正常情况下,这些指标应该显示具体的数值,而非NaN。
可能原因分析
- 
数据标注问题:标注数据可能存在异常,如某些关键点未被正确标注或标注位置超出图像范围。
 - 
验证集样本不足:当验证集样本量过少时,可能导致某些指标无法计算。
 - 
PyCOCO工具包缺失:DeepLabCut依赖PyCOCO工具包进行某些指标计算,若未正确安装可能导致计算异常。
 - 
训练配置不当:过高的学习率或过小的批量大小可能导致模型训练不稳定。
 - 
单视频训练限制:有用户反馈当仅使用单个视频进行训练时出现此问题,而使用多个视频训练则正常。
 
解决方案
- 
检查数据标注质量:
- 使用DeepLabCut内置的
check_labels功能验证标注准确性 - 确保所有关键点都被正确标注且位置合理
 
 - 使用DeepLabCut内置的
 - 
增加训练数据量:
- 使用多个视频源进行训练
 - 确保训练集和验证集都有足够数量的样本
 - 有用户报告使用至少6个视频和数百帧图像后问题消失
 
 - 
验证依赖包安装:
- 确认PyCOCO工具包已正确安装
 - 检查所有DeepLabCut依赖项是否完整
 
 - 
调整训练参数:
- 适当降低学习率
 - 增加批量大小(batch size)
 - 监控训练损失曲线,确保其正常下降
 
 - 
环境配置检查:
- 对于M系列Mac用户,确保使用专为Apple芯片优化的环境配置
 - 验证CUDA/cuDNN版本兼容性(如使用GPU)
 
 
问题排查流程
当遇到RMSE指标为NaN的情况时,建议按照以下步骤进行排查:
- 首先检查训练损失曲线是否正常收敛
 - 运行模型推理,观察预测结果是否合理
 - 检查验证集样本数量和分布
 - 验证PyCOCO工具包功能是否正常
 - 尝试增加训练数据多样性
 - 调整训练超参数后重新训练
 
总结
DeepLabCut训练过程中出现RMSE指标为NaN的情况通常与数据质量或训练配置相关,而非软件本身的缺陷。通过系统性的检查和调整,大多数情况下可以解决这一问题。对于研究用户而言,确保训练数据的质量和数量是获得可靠模型的关键。当遇到类似问题时,建议从最简单的数据检查开始,逐步排查可能的原因,最终找到适合特定实验设置的解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00