FrameGraph 项目教程
2024-09-24 17:33:02作者:胡唯隽
1. 项目介绍
FrameGraph 是一个基于 Vulkan 的抽象层,旨在简化 Vulkan 上的原型设计和图形引擎的开发。它通过将帧表示为一个任务图来实现这一目标,从而隐藏了所有同步、内存分配和其他 Vulkan 所需的样板代码。FrameGraph 的设计追求高性能,同时不牺牲易用性。它内置了验证功能,结合 Vulkan 的验证层,可以帮助开发者快速发现和修复错误。
主要特性
- 多线程命令缓冲区构建和提交
- 简单的 API 设计
- 隐藏内存分配、主机与设备之间的传输、同步等复杂操作
- 支持 RTX 扩展、异步计算和异步传输队列
- 所有渲染任务都是无状态的
支持的平台
- Windows (MSVC 2017, 2019)
- Linux (GCC 8, Clang 9)
- Android (Clang)
2. 项目快速启动
环境准备
- 安装 CMake 3.10 或更高版本
- 安装 Vulkan SDK
- 安装 VulkanMemoryAllocator
- 安装 glfw 或 SDL2
- 安装 glslang
构建项目
-
克隆项目仓库:
git clone https://github.com/azhirnov/FrameGraph.git cd FrameGraph -
生成构建文件:
cmake -S . -B build -
编译项目:
cmake --build build
运行示例
进入构建目录并运行示例程序:
cd build
./FrameGraph-Samples
3. 应用案例和最佳实践
案例1:多线程渲染
FrameGraph 支持多线程命令缓冲区构建和提交,可以显著提高渲染性能。以下是一个简单的多线程渲染示例:
void RenderThread::run() {
while (!stopRequested) {
auto commandBuffer = frameGraph.beginCommandBuffer();
// 构建命令缓冲区
frameGraph.endCommandBuffer(commandBuffer);
frameGraph.submitCommandBuffer(commandBuffer);
}
}
案例2:异步计算
FrameGraph 支持异步计算队列,可以在不影响渲染性能的情况下执行计算任务。以下是一个异步计算的示例:
void AsyncComputeTask::execute() {
auto commandBuffer = frameGraph.beginCommandBuffer(QueueType::Compute);
// 执行计算任务
frameGraph.endCommandBuffer(commandBuffer);
frameGraph.submitCommandBuffer(commandBuffer);
}
4. 典型生态项目
VulkanMemoryAllocator
VulkanMemoryAllocator 是一个高效的 Vulkan 内存管理库,FrameGraph 依赖于它来管理内存分配。
glfw 或 SDL2
glfw 和 SDL2 是常用的窗口管理和输入处理库,FrameGraph 使用它们来创建窗口和处理用户输入。
glslang
glslang 是一个 GLSL 编译器,FrameGraph 使用它来编译 GLSL 着色器代码。
SPIRV-Tools
SPIRV-Tools 提供了 SPIR-V 的优化和验证工具,FrameGraph 使用它来优化和验证生成的 SPIR-V 代码。
通过以上模块的介绍,您应该能够快速上手 FrameGraph 项目,并了解其在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869