FrameGraph 项目教程
2024-09-24 19:38:06作者:胡唯隽
1. 项目介绍
FrameGraph 是一个基于 Vulkan 的抽象层,旨在简化 Vulkan 上的原型设计和图形引擎的开发。它通过将帧表示为一个任务图来实现这一目标,从而隐藏了所有同步、内存分配和其他 Vulkan 所需的样板代码。FrameGraph 的设计追求高性能,同时不牺牲易用性。它内置了验证功能,结合 Vulkan 的验证层,可以帮助开发者快速发现和修复错误。
主要特性
- 多线程命令缓冲区构建和提交
- 简单的 API 设计
- 隐藏内存分配、主机与设备之间的传输、同步等复杂操作
- 支持 RTX 扩展、异步计算和异步传输队列
- 所有渲染任务都是无状态的
支持的平台
- Windows (MSVC 2017, 2019)
- Linux (GCC 8, Clang 9)
- Android (Clang)
2. 项目快速启动
环境准备
- 安装 CMake 3.10 或更高版本
- 安装 Vulkan SDK
- 安装 VulkanMemoryAllocator
- 安装 glfw 或 SDL2
- 安装 glslang
构建项目
-
克隆项目仓库:
git clone https://github.com/azhirnov/FrameGraph.git cd FrameGraph -
生成构建文件:
cmake -S . -B build -
编译项目:
cmake --build build
运行示例
进入构建目录并运行示例程序:
cd build
./FrameGraph-Samples
3. 应用案例和最佳实践
案例1:多线程渲染
FrameGraph 支持多线程命令缓冲区构建和提交,可以显著提高渲染性能。以下是一个简单的多线程渲染示例:
void RenderThread::run() {
while (!stopRequested) {
auto commandBuffer = frameGraph.beginCommandBuffer();
// 构建命令缓冲区
frameGraph.endCommandBuffer(commandBuffer);
frameGraph.submitCommandBuffer(commandBuffer);
}
}
案例2:异步计算
FrameGraph 支持异步计算队列,可以在不影响渲染性能的情况下执行计算任务。以下是一个异步计算的示例:
void AsyncComputeTask::execute() {
auto commandBuffer = frameGraph.beginCommandBuffer(QueueType::Compute);
// 执行计算任务
frameGraph.endCommandBuffer(commandBuffer);
frameGraph.submitCommandBuffer(commandBuffer);
}
4. 典型生态项目
VulkanMemoryAllocator
VulkanMemoryAllocator 是一个高效的 Vulkan 内存管理库,FrameGraph 依赖于它来管理内存分配。
glfw 或 SDL2
glfw 和 SDL2 是常用的窗口管理和输入处理库,FrameGraph 使用它们来创建窗口和处理用户输入。
glslang
glslang 是一个 GLSL 编译器,FrameGraph 使用它来编译 GLSL 着色器代码。
SPIRV-Tools
SPIRV-Tools 提供了 SPIR-V 的优化和验证工具,FrameGraph 使用它来优化和验证生成的 SPIR-V 代码。
通过以上模块的介绍,您应该能够快速上手 FrameGraph 项目,并了解其在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134