Tortoise ORM中update_or_create方法的使用场景与最佳实践
2025-06-09 12:51:24作者:袁立春Spencer
概述
在数据库操作中,"更新或创建"(update_or_create)是一个常见的需求模式。Tortoise ORM作为Python生态中优秀的异步ORM框架,提供了update_or_create这一便捷方法。本文将深入探讨该方法的设计原理、使用场景以及在实际开发中的最佳实践。
方法原理
Tortoise ORM的update_or_create方法设计灵感来源于Django ORM,其核心逻辑是:
- 首先尝试根据查询条件查找记录
- 如果记录存在,则使用defaults参数更新记录
- 如果记录不存在,则创建新记录
方法签名如下:
@classmethod
async def update_or_create(
cls: Type[MODEL],
defaults: Optional[dict] = None,
using_db: Optional[BaseDBAsyncClient] = None,
**kwargs: Any,
) -> Tuple[MODEL, bool]:
典型使用场景
基础用法
最常见的用法是当需要确保某条记录存在时,无论它是需要创建还是更新:
user, created = await SysUser.update_or_create(
username="john_doe",
defaults={"age": 30, "email": "john@example.com"}
)
用户登录场景
在用户认证系统中,经常需要在用户首次登录时创建记录,后续登录时更新最后登录时间等信息:
user, created = await User.update_or_create(
username=username,
defaults={"last_login": datetime.now()}
)
常见误区与解决方案
关于defaults参数的误解
开发者常误以为defaults参数与模型字段的default属性相关,实际上:
- defaults参数仅用于指定更新或创建时要设置的字段值
- 模型字段的default属性是在创建记录时未显式指定值时的默认值
部分字段更新问题
当只需要更新部分字段而保留其他字段不变时,最佳实践是:
- 显式指定需要更新的字段到defaults参数中
- 避免直接将整个模型实例传入defaults
# 推荐做法 - 只更新需要变更的字段
await User.update_or_create(
username=username,
defaults={"department": new_department}
)
# 不推荐做法 - 可能意外覆盖其他字段
await User.update_or_create(
username=username,
defaults=user.dict() # 可能包含不应更新的字段
)
高级使用建议
事务处理
update_or_create内部使用了事务保证操作的原子性。在需要更大范围的事务控制时,可以:
async with in_transaction():
user, created = await User.update_or_create(...)
# 其他相关操作
性能考量
对于高频调用的场景,建议:
- 明确指定查询条件的索引字段
- 限制defaults中的字段数量,只包含必要字段
- 考虑批量操作替代频繁的单条操作
替代方案
在某些复杂场景下,update_or_create可能不够灵活,此时可以考虑:
- 先查询后判断的显式流程
user = await User.filter(username=username).first()
if user:
await user.update_from_dict(update_fields).save()
else:
user = await User.create(**create_fields)
- 使用原生SQL或批量操作提高性能
总结
Tortoise ORM的update_or_create方法为常见的"存在则更新,不存在则创建"场景提供了简洁的解决方案。理解其设计原理和适用场景,结合具体业务需求合理使用,可以显著提高开发效率。在复杂业务逻辑中,适当采用显式流程可能更有利于维护性和灵活性。
开发者应根据实际场景选择最适合的方案,平衡代码简洁性、性能需求和业务逻辑复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355