CodeContests 项目下载及安装教程
2024-12-07 19:06:29作者:钟日瑜
1. 项目介绍
CodeContests 是一个用于机器学习的竞争编程数据集。该数据集由 Google DeepMind 开发,用于训练 AlphaCode 模型。AlphaCode 已在 Science 期刊上发表,并有一个预印本在 arXiv 上。CodeContests 数据集包含来自多个来源的编程问题,包括 Aizu、AtCoder、CodeChef、Codeforces 和 HackerEarth。每个问题都包含测试用例,以及正确和错误的人类解决方案,这些解决方案以多种编程语言提供。
2. 项目下载位置
CodeContests 项目托管在 GitHub 上,可以通过以下命令克隆项目仓库:
git clone https://github.com/google-deepmind/code_contests.git
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Linux(推荐)
- 编译器:clang
- Python 版本:3.9 或 2.7(可选)
3.2 安装 Bazel
首先,安装 Bazel 构建工具。Bazel 是一个开源的构建和测试工具,类似于 Make、Maven 和 Gradle。以下是安装 Bazel 的步骤:
-
下载 Bazel 安装包:
wget https://github.com/bazelbuild/bazel/releases/download/4.2.1/bazel-4.2.1-installer-linux-x86_64.sh
-
赋予安装包执行权限:
chmod +x bazel-4.2.1-installer-linux-x86_64.sh
-
运行安装包:
./bazel-4.2.1-installer-linux-x86_64.sh --user
-
将 Bazel 添加到系统路径:
export PATH="$PATH:$HOME/bin"
3.3 安装 Python 环境(可选)
如果需要使用 Python 进行项目处理,可以安装 Python 3.9 和 2.7:
sudo apt install python3.9 python2.7
3.4 环境配置示例
以下是环境配置的示例图片:
4. 项目安装方式
4.1 克隆项目仓库
git clone https://github.com/google-deepmind/code_contests.git
cd code_contests
4.2 构建项目
使用 Bazel 构建项目:
bazel build -c opt :print_names_and_sources
4.3 下载数据集
安装 Google Cloud SDK,以便使用 gsutil
工具下载数据集:
sudo apt install google-cloud-sdk
然后,下载数据集:
gsutil -m cp -r gs://dm-code_contests /tmp
5. 项目处理脚本
5.1 打印问题名称和来源
使用以下命令打印验证数据中的问题名称和来源:
bazel run -c opt :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli
5.2 执行和评估解决方案
执行 solve_example
脚本来执行和评估解决方案:
bazel run -c opt execution:solve_example -- --valid_path=/tmp/dm-code_contests/code_contests_valid.riegeli
5.3 自定义 Python 路径
如果需要自定义 Python 路径,可以使用以下命令:
bazel run -c opt execution:solve_example -- --valid_path=/tmp/dm-code_contests/code_contests_valid.riegeli --python3_path=/usr/bin/python3.10 --python3_library_paths=/usr/lib/python3.10
通过以上步骤,您可以成功下载、安装并运行 CodeContests 项目。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
530
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401