CodeContests 项目下载及安装教程
2024-12-07 04:36:19作者:钟日瑜
1. 项目介绍
CodeContests 是一个用于机器学习的竞争编程数据集。该数据集由 Google DeepMind 开发,用于训练 AlphaCode 模型。AlphaCode 已在 Science 期刊上发表,并有一个预印本在 arXiv 上。CodeContests 数据集包含来自多个来源的编程问题,包括 Aizu、AtCoder、CodeChef、Codeforces 和 HackerEarth。每个问题都包含测试用例,以及正确和错误的人类解决方案,这些解决方案以多种编程语言提供。
2. 项目下载位置
CodeContests 项目托管在 GitHub 上,可以通过以下命令克隆项目仓库:
git clone https://github.com/google-deepmind/code_contests.git
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Linux(推荐)
- 编译器:clang
- Python 版本:3.9 或 2.7(可选)
3.2 安装 Bazel
首先,安装 Bazel 构建工具。Bazel 是一个开源的构建和测试工具,类似于 Make、Maven 和 Gradle。以下是安装 Bazel 的步骤:
-
下载 Bazel 安装包:
wget https://github.com/bazelbuild/bazel/releases/download/4.2.1/bazel-4.2.1-installer-linux-x86_64.sh -
赋予安装包执行权限:
chmod +x bazel-4.2.1-installer-linux-x86_64.sh -
运行安装包:
./bazel-4.2.1-installer-linux-x86_64.sh --user -
将 Bazel 添加到系统路径:
export PATH="$PATH:$HOME/bin"
3.3 安装 Python 环境(可选)
如果需要使用 Python 进行项目处理,可以安装 Python 3.9 和 2.7:
sudo apt install python3.9 python2.7
3.4 环境配置示例
以下是环境配置的示例图片:

4. 项目安装方式
4.1 克隆项目仓库
git clone https://github.com/google-deepmind/code_contests.git
cd code_contests
4.2 构建项目
使用 Bazel 构建项目:
bazel build -c opt :print_names_and_sources
4.3 下载数据集
安装 Google Cloud SDK,以便使用 gsutil 工具下载数据集:
sudo apt install google-cloud-sdk
然后,下载数据集:
gsutil -m cp -r gs://dm-code_contests /tmp
5. 项目处理脚本
5.1 打印问题名称和来源
使用以下命令打印验证数据中的问题名称和来源:
bazel run -c opt :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli
5.2 执行和评估解决方案
执行 solve_example 脚本来执行和评估解决方案:
bazel run -c opt execution:solve_example -- --valid_path=/tmp/dm-code_contests/code_contests_valid.riegeli
5.3 自定义 Python 路径
如果需要自定义 Python 路径,可以使用以下命令:
bazel run -c opt execution:solve_example -- --valid_path=/tmp/dm-code_contests/code_contests_valid.riegeli --python3_path=/usr/bin/python3.10 --python3_library_paths=/usr/lib/python3.10
通过以上步骤,您可以成功下载、安装并运行 CodeContests 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355