pg_mooncake v0.1.0发布:PostgreSQL生态迎来列式存储新选择
pg_mooncake是一个基于PostgreSQL的列式存储扩展项目,它通过在PostgreSQL生态系统中引入现代数据湖技术栈的能力,为传统关系型数据库带来了处理大规模分析型工作负载的新可能。该项目v0.1.0版本的发布标志着这一技术方案已经具备了基础的生产可用性。
核心特性解析
完整的DML操作支持
pg_mooncake v0.1.0实现了完整的DML操作能力,包括INSERT、SELECT、UPDATE、DELETE等标准SQL操作,以及与COPY命令的集成。这使得开发人员可以像操作普通PostgreSQL表一样使用列式存储表,大大降低了学习曲线和使用门槛。
特别值得注意的是,该版本支持与常规PostgreSQL堆表进行JOIN操作,这意味着用户可以在同一个查询中混合使用行存和列存表,充分发挥各自优势。例如,可以将频繁更新的维度表保持为行存,而将大规模事实表转为列存,实现最佳的性能平衡。
多格式数据集成能力
该版本提供了强大的数据加载功能,支持从Parquet、CSV和JSON等常见格式直接导入数据到列存储表。对于现代数据湖环境,它还支持直接读取Iceberg和Delta Lake表格式的数据,这对于企业级数据集成场景尤为重要。
在数据导出方面,当前版本已经实现了Delta Lake表的写入能力,这使得pg_mooncake可以作为数据湖生态系统的有效组成部分,与Spark、Flink等大数据处理框架无缝协作。
性能优化特性
v0.1.0版本引入了文件统计信息和数据跳过技术,这是列式存储系统的关键性能优化手段。通过收集和维护列级别的统计信息(如min/max值),查询执行时可以跳过不相关的数据文件,显著减少I/O操作,提升查询性能。
技术架构亮点
pg_mooncake的设计体现了几个重要的架构决策:
-
深度PostgreSQL集成:作为扩展而非独立系统,它充分利用了PostgreSQL的查询规划、执行引擎和事务管理等核心功能,确保了与现有生态的兼容性。
-
混合存储模型:支持同时管理行存和列存表,并允许它们高效交互,这种混合架构可以适应多样化的业务场景。
-
开放数据格式:基于Parquet、Delta Lake等开放格式的设计,避免了数据锁定风险,方便与其他系统交换数据。
适用场景分析
pg_mooncake特别适合以下场景:
-
传统OLTP系统向分析型应用扩展:已有PostgreSQL应用需要增加分析能力时,可以逐步将大表迁移到列存,无需改变应用架构。
-
实时分析场景:相比传统数据仓库方案,它提供了更低的端到端延迟,适合需要近实时分析的场景。
-
数据湖查询加速:作为查询引擎访问数据湖中的Delta Lake/Iceberg表,比直接使用Spark SQL等方案更符合传统DBA的使用习惯。
未来展望
作为首个正式版本,pg_mooncake v0.1.0已经展示了其技术价值。未来版本可能会在分布式执行、更智能的查询优化、增量计算等方面继续演进,进一步增强其在大规模数据分析场景下的竞争力。对于PostgreSQL用户而言,这无疑是一个值得关注的技术方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00