LMMs-Eval项目中的多GPU内存分配问题解析
2025-07-01 09:56:15作者:邓越浪Henry
问题背景
在使用LMMs-Eval项目进行多模态大模型评估时,研究人员经常遇到GPU内存分配不均导致的内存溢出(OOM)问题。特别是在使用多GPU配置(如2个GPU)进行评估时,虽然通过设置device_map=auto参数可以将模型的不同层分配到不同GPU上,但在实际前向传播过程中,内存消耗仍然集中在最后一个GPU上。
现象描述
当使用以下命令进行评估时:
CUDA_VISIBLE_DEVICES=0,1 lmms-eval --model llava_onevision --model_args pretrained=xxx,conv_template=qwen_1_5,model_name=llava_qwen,device_map=auto --tasks mvbench --batch_size 1 --log_samples --log_samples_suffix llava_onevision --output_path ./logs/
研究人员观察到:
- 模型参数确实被分配到多个GPU上
- 但在前向传播过程中,内存消耗仅集中在最后一个GPU
- 最终导致OOM错误
技术原理分析
这种现象的根本原因在于device_map=auto的工作机制。它只是简单地将模型的不同层分配到不同的GPU设备上,而不是实现真正的张量并行计算。在实际推理过程中:
- 计算会依次在单个GPU上执行
- 完成一个GPU的计算后,将隐藏状态传递给下一个GPU
- 因此GPU内存使用会逐个增加,而不是平均分布
解决方案
方法一:使用srt_model和sglang服务器
对于真正需要张量并行计算的情况,建议:
- 使用
srt_model设置 - 搭建sglang服务器
- 实现真正的张量并行评估
这种方法可以更有效地利用多GPU资源,避免内存集中在单个设备上。
方法二:调整模型参数
对于资源受限的环境,可以:
- 减少加载的视频帧数
- 通过
model_args参数调整输入规模 - 降低batch_size
方法三:验证可行的配置
经过验证,以下配置可以成功运行:
lmms-eval --model llava_onevision --model_args pretrained=/path_to_your_checkpoint,conv_template=qwen_1_5,model_name=llava_qwen_training_free,device_map=auto --task your_benchmark --batch_size 1 --log_samples --log_samples_suffix llava_onevision_7b --output_path ./log
性能优化建议
- 模型选择:对于24GB显存的GPU(如3090),建议使用较小规模的模型(如0.5B参数版本)
- 监控工具:使用
nvidia-smi实时监控各GPU内存使用情况 - 参数调优:根据具体任务需求,平衡模型性能和资源消耗
总结
在多GPU环境下评估大型多模态模型时,理解内存分配机制至关重要。虽然device_map=auto可以实现模型层的分布,但并非真正的并行计算。根据实际需求选择合适的解决方案,可以有效避免OOM错误,提高评估效率。对于资源受限的环境,优化模型参数和输入规模是更为实用的方法。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111