LMMs-Eval项目中的多GPU内存分配问题解析
2025-07-01 11:11:40作者:邓越浪Henry
问题背景
在使用LMMs-Eval项目进行多模态大模型评估时,研究人员经常遇到GPU内存分配不均导致的内存溢出(OOM)问题。特别是在使用多GPU配置(如2个GPU)进行评估时,虽然通过设置device_map=auto参数可以将模型的不同层分配到不同GPU上,但在实际前向传播过程中,内存消耗仍然集中在最后一个GPU上。
现象描述
当使用以下命令进行评估时:
CUDA_VISIBLE_DEVICES=0,1 lmms-eval --model llava_onevision --model_args pretrained=xxx,conv_template=qwen_1_5,model_name=llava_qwen,device_map=auto --tasks mvbench --batch_size 1 --log_samples --log_samples_suffix llava_onevision --output_path ./logs/
研究人员观察到:
- 模型参数确实被分配到多个GPU上
- 但在前向传播过程中,内存消耗仅集中在最后一个GPU
- 最终导致OOM错误
技术原理分析
这种现象的根本原因在于device_map=auto的工作机制。它只是简单地将模型的不同层分配到不同的GPU设备上,而不是实现真正的张量并行计算。在实际推理过程中:
- 计算会依次在单个GPU上执行
- 完成一个GPU的计算后,将隐藏状态传递给下一个GPU
- 因此GPU内存使用会逐个增加,而不是平均分布
解决方案
方法一:使用srt_model和sglang服务器
对于真正需要张量并行计算的情况,建议:
- 使用
srt_model设置 - 搭建sglang服务器
- 实现真正的张量并行评估
这种方法可以更有效地利用多GPU资源,避免内存集中在单个设备上。
方法二:调整模型参数
对于资源受限的环境,可以:
- 减少加载的视频帧数
- 通过
model_args参数调整输入规模 - 降低batch_size
方法三:验证可行的配置
经过验证,以下配置可以成功运行:
lmms-eval --model llava_onevision --model_args pretrained=/path_to_your_checkpoint,conv_template=qwen_1_5,model_name=llava_qwen_training_free,device_map=auto --task your_benchmark --batch_size 1 --log_samples --log_samples_suffix llava_onevision_7b --output_path ./log
性能优化建议
- 模型选择:对于24GB显存的GPU(如3090),建议使用较小规模的模型(如0.5B参数版本)
- 监控工具:使用
nvidia-smi实时监控各GPU内存使用情况 - 参数调优:根据具体任务需求,平衡模型性能和资源消耗
总结
在多GPU环境下评估大型多模态模型时,理解内存分配机制至关重要。虽然device_map=auto可以实现模型层的分布,但并非真正的并行计算。根据实际需求选择合适的解决方案,可以有效避免OOM错误,提高评估效率。对于资源受限的环境,优化模型参数和输入规模是更为实用的方法。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1