LMMs-Eval项目中的多GPU内存分配问题解析
2025-07-01 00:17:18作者:邓越浪Henry
问题背景
在使用LMMs-Eval项目进行多模态大模型评估时,研究人员经常遇到GPU内存分配不均导致的内存溢出(OOM)问题。特别是在使用多GPU配置(如2个GPU)进行评估时,虽然通过设置device_map=auto参数可以将模型的不同层分配到不同GPU上,但在实际前向传播过程中,内存消耗仍然集中在最后一个GPU上。
现象描述
当使用以下命令进行评估时:
CUDA_VISIBLE_DEVICES=0,1 lmms-eval --model llava_onevision --model_args pretrained=xxx,conv_template=qwen_1_5,model_name=llava_qwen,device_map=auto --tasks mvbench --batch_size 1 --log_samples --log_samples_suffix llava_onevision --output_path ./logs/
研究人员观察到:
- 模型参数确实被分配到多个GPU上
- 但在前向传播过程中,内存消耗仅集中在最后一个GPU
- 最终导致OOM错误
技术原理分析
这种现象的根本原因在于device_map=auto的工作机制。它只是简单地将模型的不同层分配到不同的GPU设备上,而不是实现真正的张量并行计算。在实际推理过程中:
- 计算会依次在单个GPU上执行
- 完成一个GPU的计算后,将隐藏状态传递给下一个GPU
- 因此GPU内存使用会逐个增加,而不是平均分布
解决方案
方法一:使用srt_model和sglang服务器
对于真正需要张量并行计算的情况,建议:
- 使用
srt_model设置 - 搭建sglang服务器
- 实现真正的张量并行评估
这种方法可以更有效地利用多GPU资源,避免内存集中在单个设备上。
方法二:调整模型参数
对于资源受限的环境,可以:
- 减少加载的视频帧数
- 通过
model_args参数调整输入规模 - 降低batch_size
方法三:验证可行的配置
经过验证,以下配置可以成功运行:
lmms-eval --model llava_onevision --model_args pretrained=/path_to_your_checkpoint,conv_template=qwen_1_5,model_name=llava_qwen_training_free,device_map=auto --task your_benchmark --batch_size 1 --log_samples --log_samples_suffix llava_onevision_7b --output_path ./log
性能优化建议
- 模型选择:对于24GB显存的GPU(如3090),建议使用较小规模的模型(如0.5B参数版本)
- 监控工具:使用
nvidia-smi实时监控各GPU内存使用情况 - 参数调优:根据具体任务需求,平衡模型性能和资源消耗
总结
在多GPU环境下评估大型多模态模型时,理解内存分配机制至关重要。虽然device_map=auto可以实现模型层的分布,但并非真正的并行计算。根据实际需求选择合适的解决方案,可以有效避免OOM错误,提高评估效率。对于资源受限的环境,优化模型参数和输入规模是更为实用的方法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248