Megatron-LM中DeepSeek-V3序列辅助损失函数的实现修正
2025-05-19 14:36:03作者:廉皓灿Ida
在大型语言模型训练过程中,辅助损失函数(auxiliary loss)的设计对模型性能有着重要影响。近期在NVIDIA的Megatron-LM项目中,发现了一个关于DeepSeek-V3模型序列辅助损失函数(seq_aux_loss)实现的潜在问题。
问题背景
DeepSeek-V3是一种采用混合专家(MoE)架构的大型语言模型。在这种架构中,路由器(router)负责将输入token分配给不同的专家网络。为了确保专家负载均衡,通常会引入辅助损失函数。
在原始实现中,序列辅助损失函数使用了softmax作为评分函数。然而根据DeepSeek-V3论文的描述,正确的实现应该使用sigmoid函数配合归一化处理。这种差异可能导致模型训练过程中专家负载均衡效果不理想。
技术细节分析
在混合专家系统中,辅助损失函数主要有两个作用:
- 防止路由器总是选择相同的专家,造成某些专家过载而其他专家闲置
- 确保所有专家都能获得相对均衡的训练机会
DeepSeek-V3论文明确指出,其序列辅助损失函数应采用sigmoid激活而非softmax。这是因为:
- sigmoid函数独立处理每个专家的得分,更适合负载均衡场景
- softmax函数会产生竞争性输出,可能导致专家选择过于集中
- 配合适当的归一化处理,sigmoid能更好地反映专家的实际利用率
解决方案
针对这一问题,技术团队提出了以下修正方案:
- 修改
seq_aux_loss_load_balancing
函数实现 - 当评分函数为sigmoid时,采用论文建议的计算方式
- 保持其他评分函数(如softmax)的原有逻辑不变
- 同时修正了相关辅助损失函数的实现
这一修正确保了DeepSeek-V3模型训练时能够正确计算序列辅助损失,从而获得更好的专家负载均衡效果。修正后的代码已经在最新版本中发布。
对模型训练的影响
这一修正虽然看似微小,但对模型训练可能产生以下积极影响:
- 提高专家网络的利用率
- 减少专家闲置现象
- 可能提升模型整体性能
- 使训练过程更加稳定
对于使用Megatron-LM框架训练DeepSeek-V3或其他MoE架构模型的研究人员和工程师,建议及时更新到包含此修正的版本,以获得最佳的模型训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K