Megatron-LM中DeepSeek-V3序列辅助损失函数的实现修正
2025-05-19 02:35:16作者:廉皓灿Ida
在大型语言模型训练过程中,辅助损失函数(auxiliary loss)的设计对模型性能有着重要影响。近期在NVIDIA的Megatron-LM项目中,发现了一个关于DeepSeek-V3模型序列辅助损失函数(seq_aux_loss)实现的潜在问题。
问题背景
DeepSeek-V3是一种采用混合专家(MoE)架构的大型语言模型。在这种架构中,路由器(router)负责将输入token分配给不同的专家网络。为了确保专家负载均衡,通常会引入辅助损失函数。
在原始实现中,序列辅助损失函数使用了softmax作为评分函数。然而根据DeepSeek-V3论文的描述,正确的实现应该使用sigmoid函数配合归一化处理。这种差异可能导致模型训练过程中专家负载均衡效果不理想。
技术细节分析
在混合专家系统中,辅助损失函数主要有两个作用:
- 防止路由器总是选择相同的专家,造成某些专家过载而其他专家闲置
- 确保所有专家都能获得相对均衡的训练机会
DeepSeek-V3论文明确指出,其序列辅助损失函数应采用sigmoid激活而非softmax。这是因为:
- sigmoid函数独立处理每个专家的得分,更适合负载均衡场景
- softmax函数会产生竞争性输出,可能导致专家选择过于集中
- 配合适当的归一化处理,sigmoid能更好地反映专家的实际利用率
解决方案
针对这一问题,技术团队提出了以下修正方案:
- 修改
seq_aux_loss_load_balancing函数实现 - 当评分函数为sigmoid时,采用论文建议的计算方式
- 保持其他评分函数(如softmax)的原有逻辑不变
- 同时修正了相关辅助损失函数的实现
这一修正确保了DeepSeek-V3模型训练时能够正确计算序列辅助损失,从而获得更好的专家负载均衡效果。修正后的代码已经在最新版本中发布。
对模型训练的影响
这一修正虽然看似微小,但对模型训练可能产生以下积极影响:
- 提高专家网络的利用率
- 减少专家闲置现象
- 可能提升模型整体性能
- 使训练过程更加稳定
对于使用Megatron-LM框架训练DeepSeek-V3或其他MoE架构模型的研究人员和工程师,建议及时更新到包含此修正的版本,以获得最佳的模型训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 XL6009自动升降压电源原理图:电子工程师的必备利器【亲测免费】 SUSTechPOINTS 技术文档:3D点云标注工具深度指南【免费下载】 网络安全渗透测试报告模板-2023下载 开源精粹:Klipper 3D 打印机固件深度剖析【亲测免费】 ObjectARX 2020 + AutoCAD 2021 .NET 向导资源文件 Prism 项目技术文档【免费下载】 Navicat Premium 连接Oracle 11g 必备oci.dll 文件指南 TypeIt 技术文档【亲测免费】 SecGPT:引领网络安全智能化的新纪元【亲测免费】 Rescuezilla 项目下载及安装教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347