Apache Arrow-RS项目中的Parquet统计信息优化方案
背景介绍
在Apache Arrow-RS项目中,Parquet文件格式的统计信息存储机制存在冗余问题。Parquet文件格式目前提供了三种统计信息存储位置:列块(ColumnChunk)元数据、数据页(Data Page)头部以及列索引(ColumnIndex)。这种多位置存储机制导致了存储空间的浪费和性能问题。
当前实现的问题
当前实现中,EnabledStatistics::Page选项会同时在三个位置写入统计信息:
- 列块元数据中的统计信息
- 数据页头部的统计信息
- 列索引中的统计信息
这种实现方式存在两个主要问题:
- 存储空间浪费:数据页头部的统计信息与列索引中的统计信息实际上是重复的
- 兼容性问题:数据页头部的统计信息在现代Parquet阅读器中甚至无法被访问,其功能已被列索引完全取代
技术分析
Parquet格式规范明确指出:"支持ColumnIndex的阅读器不应再使用页面统计信息。在写入ColumnIndex结构时同时写入页面级统计信息的唯一原因是为了支持旧的阅读器(不推荐)"。这表明当前实现方式已经不符合最佳实践。
优化方案
经过社区讨论,提出了三种优化方案:
-
重新定义EnabledStatistics::Page:保持API不变,但修改其行为,使其只写入列块和列索引统计信息,不再写入数据页头部统计信息。同时新增一个显式选项来控制是否写入数据页统计信息。
-
新增ChunkAndIndex选项:添加一个新的枚举变体,专门用于写入列块和列索引统计信息,而不写入数据页头部统计信息。
-
细化统计信息选项:将统计信息选项细化为None、Chunk、ColumnIndex和ColumnIndexAndPage四种情况,提供更精确的控制。
推荐方案
综合考虑API兼容性和实际需求,推荐采用第一种方案:
- 保持现有API不变,避免破坏性变更
- 符合Parquet格式规范的最佳实践
- 自动为现有用户优化文件大小
- 通过新增选项保留对旧格式的支持能力
实施影响
这一优化将带来以下好处:
- 显著减少Parquet文件大小
- 提高写入性能
- 保持与现代Parquet阅读器的兼容性
- 符合格式规范推荐的最佳实践
对于需要向后兼容的特殊场景,可以通过新增的显式选项来启用数据页统计信息的写入。
结论
Apache Arrow-RS项目中的Parquet统计信息存储机制优化是一个典型的性能与兼容性平衡问题。通过重新定义现有枚举行为并添加精细控制选项,可以在不破坏现有API的情况下实现显著的存储优化,同时保持必要的兼容性支持。这一改进将提升Arrow-RS在处理大规模数据时的整体效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00