OpenBMB/OmniLMM项目中vLLM API调用MiniCPM模型的正确方式
2025-05-11 04:43:10作者:柯茵沙
在使用OpenBMB/OmniLMM项目中的MiniCPM-V-2_6模型时,许多开发者会遇到通过vLLM API调用模型时出现的404 Not Found错误。本文将详细解释这一问题的根源以及正确的配置方法。
问题现象
当开发者使用以下命令启动vLLM服务:
CUDA_VISIBLE_DEVICES=1 vllm serve /home/suny/.cache/modelscope/hub/OpenBMB/MiniCPM-V-2_6/ --host 0.0.0.0 --port 9998 --gpu-memory-utilization 0.3 --enforce-eager --max-model-len 2048 --trust-remote-code --api-key minicpm
然后尝试通过OpenAI客户端库调用时:
client = OpenAI(api_key='minicpm', base_url="http://0.0.0.0:9998/v1")
client.chat.completions.create(
model="/home/suny/.cache/modelscope/hub/OpenBMB/MiniCPM-V-2_6",
messages=[...]
)
系统会返回404错误,提示模型不存在。
问题根源
这个问题的根本原因在于vLLM服务的模型名称配置与API调用时的模型名称不匹配。vLLM服务默认不会自动识别模型路径作为服务名称,而是需要显式指定。
正确配置方法
1. 启动vLLM服务
正确的服务启动命令应该包含--served-model-name参数,明确指定服务暴露的模型名称:
NAME="MiniCPM-V-2_6" && \
vllm serve /mnt/models/$NAME \
--served-model-name $NAME \
--host 0.0.0.0 \
--port 8001 \
--tensor-parallel-size 4 \
--max-model-len 4096 \
--trust-remote-code
关键参数说明:
--served-model-name:定义API调用时使用的模型名称--trust-remote-code:允许加载自定义模型代码--max-model-len:设置最大上下文长度
2. API调用方式
对应的Python调用代码应为:
client = OpenAI(
api_key='EMPTY_API_KEY', # 如果未设置API密钥验证,可以使用任意字符串
base_url='http://localhost:8001/v1'
)
response = client.chat.completions.create(
model='MiniCPM-V-2_6', # 必须与--served-model-name一致
messages=[{
'role': 'user',
'content': [
{'type': 'text', 'text': '请描述这张图片'},
{'type': 'image_url', 'image_url': {'url': image}}
]
}],
extra_body={'stop_token_ids': [151645, 151643]} # MiniCPM特定的停止token
)
高级配置建议
-
GPU内存管理:对于大模型,可以使用
--gpu-memory-utilization参数控制GPU内存使用率,例如0.8表示使用80%的GPU内存。 -
批处理大小:通过
--max-num-seqs参数可以控制并行处理的请求数量,平衡吞吐量和延迟。 -
量化配置:如果使用量化模型,需要添加
--quantization参数指定量化方法,如awq或gptq。
当前限制
需要注意的是,当前vLLM官方实现对于多模态输入有以下限制:
- 不支持视频输入
- 不支持多张图片同时输入
- 图像处理能力取决于具体模型实现
OpenBMB团队表示将持续跟进这些功能的开发进展。
最佳实践总结
- 始终明确指定
--served-model-name参数 - API调用时使用简化的模型名称而非完整路径
- 对于MiniCPM系列模型,需要设置正确的stop_token_ids
- 监控GPU使用情况,合理配置内存参数
- 多模态功能使用时需确认模型支持情况
通过以上配置,开发者可以顺利地在生产环境中部署和调用MiniCPM模型,充分发挥其多模态能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111