OpenBMB/OmniLMM项目中vLLM API调用MiniCPM模型的正确方式
2025-05-11 22:43:08作者:柯茵沙
在使用OpenBMB/OmniLMM项目中的MiniCPM-V-2_6模型时,许多开发者会遇到通过vLLM API调用模型时出现的404 Not Found错误。本文将详细解释这一问题的根源以及正确的配置方法。
问题现象
当开发者使用以下命令启动vLLM服务:
CUDA_VISIBLE_DEVICES=1 vllm serve /home/suny/.cache/modelscope/hub/OpenBMB/MiniCPM-V-2_6/ --host 0.0.0.0 --port 9998 --gpu-memory-utilization 0.3 --enforce-eager --max-model-len 2048 --trust-remote-code --api-key minicpm
然后尝试通过OpenAI客户端库调用时:
client = OpenAI(api_key='minicpm', base_url="http://0.0.0.0:9998/v1")
client.chat.completions.create(
model="/home/suny/.cache/modelscope/hub/OpenBMB/MiniCPM-V-2_6",
messages=[...]
)
系统会返回404错误,提示模型不存在。
问题根源
这个问题的根本原因在于vLLM服务的模型名称配置与API调用时的模型名称不匹配。vLLM服务默认不会自动识别模型路径作为服务名称,而是需要显式指定。
正确配置方法
1. 启动vLLM服务
正确的服务启动命令应该包含--served-model-name参数,明确指定服务暴露的模型名称:
NAME="MiniCPM-V-2_6" && \
vllm serve /mnt/models/$NAME \
--served-model-name $NAME \
--host 0.0.0.0 \
--port 8001 \
--tensor-parallel-size 4 \
--max-model-len 4096 \
--trust-remote-code
关键参数说明:
--served-model-name:定义API调用时使用的模型名称--trust-remote-code:允许加载自定义模型代码--max-model-len:设置最大上下文长度
2. API调用方式
对应的Python调用代码应为:
client = OpenAI(
api_key='EMPTY_API_KEY', # 如果未设置API密钥验证,可以使用任意字符串
base_url='http://localhost:8001/v1'
)
response = client.chat.completions.create(
model='MiniCPM-V-2_6', # 必须与--served-model-name一致
messages=[{
'role': 'user',
'content': [
{'type': 'text', 'text': '请描述这张图片'},
{'type': 'image_url', 'image_url': {'url': image}}
]
}],
extra_body={'stop_token_ids': [151645, 151643]} # MiniCPM特定的停止token
)
高级配置建议
-
GPU内存管理:对于大模型,可以使用
--gpu-memory-utilization参数控制GPU内存使用率,例如0.8表示使用80%的GPU内存。 -
批处理大小:通过
--max-num-seqs参数可以控制并行处理的请求数量,平衡吞吐量和延迟。 -
量化配置:如果使用量化模型,需要添加
--quantization参数指定量化方法,如awq或gptq。
当前限制
需要注意的是,当前vLLM官方实现对于多模态输入有以下限制:
- 不支持视频输入
- 不支持多张图片同时输入
- 图像处理能力取决于具体模型实现
OpenBMB团队表示将持续跟进这些功能的开发进展。
最佳实践总结
- 始终明确指定
--served-model-name参数 - API调用时使用简化的模型名称而非完整路径
- 对于MiniCPM系列模型,需要设置正确的stop_token_ids
- 监控GPU使用情况,合理配置内存参数
- 多模态功能使用时需确认模型支持情况
通过以上配置,开发者可以顺利地在生产环境中部署和调用MiniCPM模型,充分发挥其多模态能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218