async-profiler中LiveObject模式下的StackTrace缺失问题解析
问题背景
在Java性能分析工具async-profiler的使用过程中,当启用LiveObject模式时,部分用户遇到了StackTrace信息无法正确记录的问题。具体表现为生成的JFR文件中,部分分配事件(Allocation in new TLAB)的堆栈跟踪信息为空,导致后续解析这些文件时出现空指针异常。
问题现象
用户在使用async-profiler进行内存分析时发现:
- 当禁用LiveObject模式(modes.LIVEOBJECT = false)时,内存收集报告正常,所有分配事件都有完整的堆栈跟踪信息
- 当启用LiveObject模式(modes.LIVEOBJECT = true)时,偶尔会出现堆栈跟踪信息缺失的情况
- 使用IDEA等工具查看JFR文件时,部分Allocation in new TLAB事件的Stack Trace字段为空
- 后端解析JFR文件时,尝试通过stackTraceId查找StackTrace会失败,导致NullPointerException
技术分析
经过深入分析,发现问题根源在于async-profiler当前版本的设计限制:
-
记录机制差异:在LiveObject模式下,async-profiler使用不同的路径记录分配事件。普通模式下会记录完整的分配信息,而LiveObject模式下主要关注存活对象跟踪。
-
参数传递问题:在ObjectSampler::recordAllocation方法中,LiveObject模式调用recordSample时第二个参数(表示采样大小)传递了0,而非实际分配大小(event._total_size)。这影响了后续堆栈信息的记录。
-
事件类型冲突:当前版本无法同时正确处理jdk.ObjectAllocationInNewTLAB(普通分配事件)和profiler.LiveObject(存活对象事件)两种事件类型。当启用live选项时,系统主要关注后者,而前者可能被部分忽略。
解决方案
开发团队已经意识到这个问题,并在最新版本中提供了修复方案:
-
参数修正:调整recordSample方法的调用参数,确保在LiveObject模式下也传递正确的分配大小信息。
-
架构改进:重构事件处理逻辑,使得工具能够同时支持普通分配事件和存活对象事件的完整记录。
-
兼容性增强:确保修复后的版本在不同JDK版本(JDK11、JDK17等)上都能正常工作。
最佳实践建议
对于需要使用async-profiler进行内存分析的用户,建议:
- 如果主要关注对象分配情况,可以暂时禁用LiveObject模式
- 如果需要同时分析分配和存活对象,建议升级到包含此修复的最新版本
- 在解析JFR文件时,增加对空堆栈情况的容错处理,避免解析失败
总结
async-profiler作为一款强大的Java性能分析工具,其LiveObject功能为内存分析提供了重要支持。此次发现的StackTrace缺失问题反映了工具在复杂场景下的使用边界。通过开发团队的及时修复,工具的功能完整性和稳定性得到了进一步提升,为用户提供了更可靠的分析体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00