async-profiler中LiveObject模式下的StackTrace缺失问题解析
问题背景
在Java性能分析工具async-profiler的使用过程中,当启用LiveObject模式时,部分用户遇到了StackTrace信息无法正确记录的问题。具体表现为生成的JFR文件中,部分分配事件(Allocation in new TLAB)的堆栈跟踪信息为空,导致后续解析这些文件时出现空指针异常。
问题现象
用户在使用async-profiler进行内存分析时发现:
- 当禁用LiveObject模式(modes.LIVEOBJECT = false)时,内存收集报告正常,所有分配事件都有完整的堆栈跟踪信息
- 当启用LiveObject模式(modes.LIVEOBJECT = true)时,偶尔会出现堆栈跟踪信息缺失的情况
- 使用IDEA等工具查看JFR文件时,部分Allocation in new TLAB事件的Stack Trace字段为空
- 后端解析JFR文件时,尝试通过stackTraceId查找StackTrace会失败,导致NullPointerException
技术分析
经过深入分析,发现问题根源在于async-profiler当前版本的设计限制:
-
记录机制差异:在LiveObject模式下,async-profiler使用不同的路径记录分配事件。普通模式下会记录完整的分配信息,而LiveObject模式下主要关注存活对象跟踪。
-
参数传递问题:在ObjectSampler::recordAllocation方法中,LiveObject模式调用recordSample时第二个参数(表示采样大小)传递了0,而非实际分配大小(event._total_size)。这影响了后续堆栈信息的记录。
-
事件类型冲突:当前版本无法同时正确处理jdk.ObjectAllocationInNewTLAB(普通分配事件)和profiler.LiveObject(存活对象事件)两种事件类型。当启用live选项时,系统主要关注后者,而前者可能被部分忽略。
解决方案
开发团队已经意识到这个问题,并在最新版本中提供了修复方案:
-
参数修正:调整recordSample方法的调用参数,确保在LiveObject模式下也传递正确的分配大小信息。
-
架构改进:重构事件处理逻辑,使得工具能够同时支持普通分配事件和存活对象事件的完整记录。
-
兼容性增强:确保修复后的版本在不同JDK版本(JDK11、JDK17等)上都能正常工作。
最佳实践建议
对于需要使用async-profiler进行内存分析的用户,建议:
- 如果主要关注对象分配情况,可以暂时禁用LiveObject模式
- 如果需要同时分析分配和存活对象,建议升级到包含此修复的最新版本
- 在解析JFR文件时,增加对空堆栈情况的容错处理,避免解析失败
总结
async-profiler作为一款强大的Java性能分析工具,其LiveObject功能为内存分析提供了重要支持。此次发现的StackTrace缺失问题反映了工具在复杂场景下的使用边界。通过开发团队的及时修复,工具的功能完整性和稳定性得到了进一步提升,为用户提供了更可靠的分析体验。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0120AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









