深度自编码器在协同过滤中的应用:电影推荐系统
2024-09-21 07:54:24作者:柏廷章Berta
项目介绍
在当今信息爆炸的时代,推荐系统已成为帮助用户筛选信息的重要工具。协同过滤(Collaborative Filtering)是一种广泛应用于推荐系统中的技术,通过收集大量用户对物品的偏好信息,预测特定用户对某一物品的兴趣。本项目利用深度自编码器(Deep Autoencoders)技术,构建了一个电影推荐系统,旨在根据用户的观影历史和评分,预测用户对未观看电影的评分。
项目技术分析
本项目采用了深度自编码器作为核心模型,这是一种结合了深度学习和自编码器的技术。自编码器通过将输入数据压缩成低维表示,再通过解码器重构原始数据,从而学习数据的潜在特征。在协同过滤中,自编码器能够捕捉用户和电影之间的复杂关系,从而提高推荐的准确性。
项目的技术实现步骤如下:
- 数据准备:使用MovieLens的ml-1m数据集,该数据集包含了大量用户对电影的评分信息。通过
train_test_split.py脚本将数据集划分为训练集和测试集。 - 数据转换:使用
tf_record_writer.py脚本将数据转换为TensorFlow的TFRecord格式,便于模型训练。 - 模型训练:通过
training.py脚本启动模型训练,训练过程中会输出每个epoch的训练损失和测试损失,以及平均绝对误差(mean_abs_error),用于评估模型的性能。
项目及技术应用场景
本项目适用于以下场景:
- 电影推荐系统:根据用户的观影历史和评分,推荐用户可能感兴趣的电影。
- 电子商务推荐:在电商平台上,根据用户的购买历史和评价,推荐用户可能感兴趣的商品。
- 音乐推荐系统:根据用户的音乐收听历史和评分,推荐用户可能喜欢的音乐。
项目特点
- 高准确性:深度自编码器能够捕捉用户和电影之间的复杂关系,从而提高推荐的准确性。
- 易于扩展:项目代码结构清晰,易于扩展到其他数据集和应用场景。
- 开源社区支持:项目代码开源,用户可以自由修改和优化,同时也可以从社区中获得支持和帮助。
通过本项目,用户不仅可以学习到深度自编码器在协同过滤中的应用,还可以将其应用于实际的推荐系统中,提升用户体验。欢迎大家使用并贡献代码,共同推动推荐系统技术的发展!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K