首页
/ Deep-Autoencoders-For-Collaborative-Filtering 项目教程

Deep-Autoencoders-For-Collaborative-Filtering 项目教程

2024-09-18 14:16:50作者:戚魁泉Nursing

项目介绍

Deep-Autoencoders-For-Collaborative-Filtering 是一个基于深度自编码器(Deep Autoencoders)的协同过滤推荐系统项目。该项目利用深度学习技术,通过训练深度自编码器模型来预测用户对物品的评分,从而实现个性化推荐。项目的主要目标是提供一个高效且易于扩展的推荐系统解决方案,适用于各种推荐场景。

项目快速启动

环境准备

在开始之前,请确保您的环境中已经安装了以下依赖:

  • Python 3.6+
  • TensorFlow 2.x
  • NumPy
  • Pandas

您可以使用以下命令安装所需的 Python 包:

pip install tensorflow numpy pandas

克隆项目

首先,克隆项目到本地:

git clone https://github.com/artem-oppermann/Deep-Autoencoders-For-Collaborative-Filtering.git
cd Deep-Autoencoders-For-Collaborative-Filtering

数据准备

项目中提供了一个示例数据集 data/ratings.csv,您可以使用该数据集进行快速启动。如果您有自己的数据集,请将其格式化为与示例数据集相同的格式。

训练模型

使用以下命令训练模型:

python train.py --data_path data/ratings.csv --epochs 10 --batch_size 64

评估模型

训练完成后,您可以使用以下命令评估模型的性能:

python evaluate.py --model_path saved_models/model.h5 --data_path data/ratings.csv

应用案例和最佳实践

应用案例

  1. 电影推荐系统:使用该模型预测用户对电影的评分,从而为用户推荐他们可能喜欢的电影。
  2. 电商推荐系统:在电商平台上,根据用户的购买历史和浏览行为,推荐相关商品。
  3. 音乐推荐系统:根据用户的音乐播放历史,推荐他们可能喜欢的音乐。

最佳实践

  1. 数据预处理:在训练模型之前,确保数据已经过适当的预处理,例如归一化、缺失值处理等。
  2. 超参数调优:通过调整模型的超参数(如学习率、批量大小、隐藏层节点数等),可以显著提高模型的性能。
  3. 模型集成:可以尝试将多个模型的预测结果进行集成,以提高推荐的准确性。

典型生态项目

  1. TensorFlow Recommenders:TensorFlow 官方推荐的推荐系统库,提供了多种推荐算法和工具。
  2. Surprise:一个用于构建和分析推荐系统的 Python 库,支持多种协同过滤算法。
  3. LightFM:一个混合推荐系统库,结合了内容过滤和协同过滤的优点。

通过结合这些生态项目,您可以进一步扩展和优化您的推荐系统。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8