NeuralForecast项目中的评估指标模块变更解析
2025-06-24 02:17:33作者:余洋婵Anita
评估指标模块的演进
在时间序列预测领域,Nixtla的NeuralForecast项目一直致力于提供高效、灵活的预测工具。近期项目升级至2.0版本后,评估指标模块发生了重要变化,这对用户的使用方式产生了直接影响。
旧版评估指标实现方式
在早期版本中,项目通过datasetsforecast.losses模块提供了一系列评估指标函数,包括均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)等。典型的使用模式如下:
from datasetsforecast.losses import mse, mae, rmse
from datasetsforecast.evaluation import accuracy
evaluation_df = accuracy(cv_df, [mse, mae, rmse], agg_by=['unique_id'])
这种方式允许用户直接导入指标函数,并通过accuracy函数计算预测结果的准确性。
2.0版本的重要变更
随着项目升级到2.0版本,评估指标的实现方式发生了以下关键变化:
- 移除了
datasetsforecast.losses模块 - 将评估指标实现迁移到了
neuralforecast.losses.pytorch模块 - 指标实现从函数形式转变为类形式
新的使用方式变为:
from neuralforecast.losses.pytorch import MSE, MAE, RMSE
新旧版本差异分析
- 模块结构变化:指标实现从独立子项目迁移到核心模块
- 实现形式变化:从函数式编程转为面向对象方式
- 功能增强:新版提供了更丰富的配置选项和扩展能力
迁移建议
对于从旧版本迁移到2.0版本的用户,需要注意以下几点:
- 导入路径需要更新为新的模块位置
- 指标使用时需要实例化相应的类
- 评估流程可能需要相应调整以适应新的API设计
技术实现考量
这种架构变更反映了项目团队对代码组织的重新思考:
- 统一性:将所有核心功能集中在主项目中
- 可扩展性:类形式更容易添加新的特性和配置选项
- 性能优化:基于PyTorch的实现可以更好地利用GPU加速
总结
NeuralForecast 2.0在评估指标方面的变更代表了项目向更统一、更专业的架构演进。虽然这种变化需要用户进行一定的代码调整,但它为未来的功能扩展和性能优化奠定了更好的基础。建议用户及时更新代码以适应新版本,以充分利用项目提供的最新特性和改进。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660