Mini Mars Rover 开源项目教程
项目介绍
Mini Mars Rover 是一个教育机器人平台,旨在激发孩子们(不仅仅是孩子们)对编程、电子、技术和太空的兴趣。该项目基于 Raspberry Pi Pico W 构建,可以使用 MicroPython 进行编程,并通过 WiFi 进行控制。此外,所有电子元件都可以替换为 Arduino 等其他平台。机器人底盘的设计考虑到了开放机器人平台,便于设计支架、适配器和零件,并重复使用现有零件。
项目快速启动
环境准备
-
硬件:
- Raspberry Pi Pico W
- 电机和轮子
- FPV 摄像头和屏幕
- 电池
- 伺服电机
-
软件:
- MicroPython
- Python 服务器应用
安装步骤
-
下载项目代码:
git clone https://github.com/NikodemBartnik/Mini-Mars-Rover.git -
安装 MicroPython: 将 MicroPython 固件烧录到 Raspberry Pi Pico W 上。
-
配置 WiFi: 在
config.py文件中配置 WiFi 连接信息。 -
运行服务器应用: 在电脑上运行 Python 服务器应用,用于通过 WiFi 控制机器人。
示例代码
以下是一个简单的 MicroPython 代码示例,用于控制机器人的移动:
from machine import Pin, PWM
import time
# 定义电机引脚
motor_left = PWM(Pin(15))
motor_right = PWM(Pin(14))
# 设置 PWM 频率
motor_left.freq(1000)
motor_right.freq(1000)
# 前进
def forward():
motor_left.duty_u16(65535)
motor_right.duty_u16(65535)
# 停止
def stop():
motor_left.duty_u16(0)
motor_right.duty_u16(0)
# 测试
forward()
time.sleep(2)
stop()
应用案例和最佳实践
教育用途
Mini Mars Rover 非常适合用于学校的机器人课程,帮助学生学习编程、电子和机械设计。通过实际操作,学生可以更好地理解理论知识,并培养解决问题的能力。
科研项目
研究人员可以使用 Mini Mars Rover 进行各种实验,例如环境监测、路径规划和自主导航。其开放的设计使得研究人员可以根据需要进行定制和扩展。
家庭娱乐
对于科技爱好者和家庭用户,Mini Mars Rover 可以作为一个有趣的 DIY 项目,通过编程和控制机器人,增加家庭娱乐的趣味性。
典型生态项目
Open Robotics Platform
Open Robotics Platform 是一个开源的机器人开发平台,提供了丰富的资源和工具,帮助开发者快速构建和测试机器人项目。Mini Mars Rover 可以作为该平台的一个典型应用案例。
MicroPython
MicroPython 是一个专为嵌入式系统设计的 Python 实现,非常适合在资源受限的设备上运行。Mini Mars Rover 使用 MicroPython 进行编程,展示了其在实际项目中的应用。
Raspberry Pi Pico
Raspberry Pi Pico 是一款性价比极高的微控制器,广泛应用于各种嵌入式项目。Mini Mars Rover 基于 Raspberry Pi Pico W 构建,充分利用了其强大的性能和丰富的接口。
通过以上模块的介绍,您应该对 Mini Mars Rover 项目有了全面的了解,并能够快速上手进行开发和应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00