Azure-Sentinel中SharePoint下载行为异常检测规则的分析与优化
2025-06-09 16:21:21作者:胡易黎Nicole
背景介绍
在Azure-Sentinel安全分析平台中,SharePoint下载行为监控是一个重要的安全检测场景。其中"SharePoint_Downloads_byNewIP"规则用于检测用户从新IP地址下载SharePoint文件的异常行为,这是识别潜在账户泄露或内部威胁的关键指标。
问题发现
在分析该检测规则的KQL查询逻辑时,发现其基线计算部分存在潜在缺陷。原始查询通过以下方式计算用户行为基线:
- 首先在14天的时间窗口内统计每个用户对每个站点URL从特定IP地址的操作次数
- 然后简单地计算这些计数的平均值作为基线
这种计算方法忽略了时间维度上的分布特征,可能导致基线计算不准确。例如,一个用户在13天内有少量操作,但在第14天有大量操作,原始方法会将这些操作平均计算,无法真实反映用户日常行为模式。
技术分析
正确的基线计算方法应考虑时间维度上的分布特征。具体来说:
- 应该先将时间划分为固定间隔(如1天)
- 统计每个时间间隔内的操作次数
- 然后计算这些日统计值的平均值
这种方法能更准确地反映用户的日常行为模式,避免因某天异常活动而影响整体基线计算。
优化方案
优化后的KQL查询逻辑应调整为:
let userBaseline = OfficeActivity
| where TimeGenerated between(ago(starttime)..ago(endtime))
| where RecordType =~ szSharePointFileOperation
| where Operation in~ (szOperations)
| where isnotempty(UserAgent)
| summarize Count = count() by UserId, Operation, Site_Url, ClientIP, bin(TimeGenerated, 1d)
| summarize AvgCount = avg(Count) by UserId, Operation, Site_Url, ClientIP;
关键改进点是在第一次summarize时增加了按天分组(bin(TimeGenerated, 1d)),这样后续的平均值计算才是真正的日均值,而非总平均值。
影响范围
这种基线计算方法的问题不仅存在于"SharePoint_Downloads_byNewIP"规则中,其他采用类似逻辑的检测规则也可能存在相同问题。安全团队应全面审查所有基于用户行为基线的检测规则,确保其统计方法的正确性。
实施建议
对于使用Azure-Sentinel的组织,建议:
- 检查所有基于用户行为基线的检测规则
- 确保时间维度被正确纳入基线计算
- 根据实际业务场景调整时间分桶粒度(如1小时、1天等)
- 对修改后的规则进行充分测试,验证其检测效果
正确的基线计算方法能显著提高异常检测的准确性,减少误报和漏报,提升整体安全运营效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19