Azure-Sentinel中SharePoint下载行为异常检测规则的分析与优化
2025-06-09 13:11:24作者:胡易黎Nicole
背景介绍
在Azure-Sentinel安全分析平台中,SharePoint下载行为监控是一个重要的安全检测场景。其中"SharePoint_Downloads_byNewIP"规则用于检测用户从新IP地址下载SharePoint文件的异常行为,这是识别潜在账户泄露或内部威胁的关键指标。
问题发现
在分析该检测规则的KQL查询逻辑时,发现其基线计算部分存在潜在缺陷。原始查询通过以下方式计算用户行为基线:
- 首先在14天的时间窗口内统计每个用户对每个站点URL从特定IP地址的操作次数
- 然后简单地计算这些计数的平均值作为基线
这种计算方法忽略了时间维度上的分布特征,可能导致基线计算不准确。例如,一个用户在13天内有少量操作,但在第14天有大量操作,原始方法会将这些操作平均计算,无法真实反映用户日常行为模式。
技术分析
正确的基线计算方法应考虑时间维度上的分布特征。具体来说:
- 应该先将时间划分为固定间隔(如1天)
- 统计每个时间间隔内的操作次数
- 然后计算这些日统计值的平均值
这种方法能更准确地反映用户的日常行为模式,避免因某天异常活动而影响整体基线计算。
优化方案
优化后的KQL查询逻辑应调整为:
let userBaseline = OfficeActivity
| where TimeGenerated between(ago(starttime)..ago(endtime))
| where RecordType =~ szSharePointFileOperation
| where Operation in~ (szOperations)
| where isnotempty(UserAgent)
| summarize Count = count() by UserId, Operation, Site_Url, ClientIP, bin(TimeGenerated, 1d)
| summarize AvgCount = avg(Count) by UserId, Operation, Site_Url, ClientIP;
关键改进点是在第一次summarize时增加了按天分组(bin(TimeGenerated, 1d)),这样后续的平均值计算才是真正的日均值,而非总平均值。
影响范围
这种基线计算方法的问题不仅存在于"SharePoint_Downloads_byNewIP"规则中,其他采用类似逻辑的检测规则也可能存在相同问题。安全团队应全面审查所有基于用户行为基线的检测规则,确保其统计方法的正确性。
实施建议
对于使用Azure-Sentinel的组织,建议:
- 检查所有基于用户行为基线的检测规则
- 确保时间维度被正确纳入基线计算
- 根据实际业务场景调整时间分桶粒度(如1小时、1天等)
- 对修改后的规则进行充分测试,验证其检测效果
正确的基线计算方法能显著提高异常检测的准确性,减少误报和漏报,提升整体安全运营效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896