A2J:单张深度图像的3D关节姿态估计网络
2024-09-25 06:10:14作者:凌朦慧Richard
项目介绍
A2J(Anchor-to-Joint Regression Network)是由Zhang Boshen等人提出的一种用于从单张深度图像中进行3D手部和人体姿态估计的网络模型。该模型在2019年的国际计算机视觉大会(ICCV)上发表,并在多个数据集上展示了其优越的性能。A2J的核心思想是通过锚点(Anchor)到关节(Joint)的回归网络,有效地从深度图像中提取并估计3D姿态。

项目技术分析
A2J采用了一种简单而有效的架构,通过锚点机制来预测关节的位置。具体来说,网络首先在图像中生成多个锚点,然后通过回归的方式将这些锚点映射到实际的关节位置。这种设计不仅提高了模型的准确性,还显著减少了计算复杂度。
主要技术点:
- 锚点机制:通过在图像中预设多个锚点,网络能够更精确地定位关节位置。
- 回归网络:利用深度学习中的回归技术,直接从锚点预测关节的3D坐标。
- 多数据集支持:A2J在多个公开数据集上进行了广泛的测试,包括NYU、ICVL、HANDS2017、ITOP和K2HPD,展示了其强大的泛化能力。
项目及技术应用场景
A2J的应用场景非常广泛,特别是在需要高精度3D姿态估计的领域。以下是一些典型的应用场景:
- 人机交互:在虚拟现实(VR)和增强现实(AR)中,精确的手部和身体姿态估计是实现自然交互的关键。
- 医疗诊断:在康复训练和手术模拟中,3D姿态估计可以帮助医生更准确地评估患者的动作和姿态。
- 机器人技术:在机器人操作和导航中,精确的姿态估计可以帮助机器人更好地理解和响应环境。
项目特点
A2J项目具有以下显著特点:
- 高精度:在多个数据集上,A2J的性能均优于现有的最先进方法,特别是在HANDS2017挑战赛中获得了第二名。
- 高效性:通过锚点机制和回归网络的设计,A2J在保证高精度的同时,显著减少了计算复杂度。
- 易用性:项目提供了完整的代码实现和预训练模型,用户可以轻松地在自己的数据集上进行测试和应用。
总结
A2J是一个高效且高精度的3D姿态估计网络,适用于多种应用场景。无论是在学术研究还是工业应用中,A2J都展现出了其强大的潜力。如果你正在寻找一个可靠的3D姿态估计解决方案,A2J无疑是一个值得尝试的选择。
项目地址:A2J GitHub
参考文献:
@inproceedings{A2J,
author = {Xiong, Fu and Zhang, Boshen and Xiao, Yang and Cao, Zhiguo and Yu, Taidong and Zhou Tianyi, Joey and Yuan, Junsong},
title = {A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image},
booktitle = {Proceedings of the IEEE Conference on International Conference on Computer Vision (ICCV)},
year = {2019}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
752
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
140
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
730
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232