在Sapiens项目中提取ViT模型CLS Token的技术解析
背景介绍
Sapiens项目是Facebook Research推出的一个基于视觉Transformer(ViT)的计算机视觉项目。在使用预训练模型进行特征提取时,开发者经常会遇到如何正确获取CLS Token的问题。CLS Token在Transformer架构中扮演着重要角色,通常用于分类任务或作为整个输入序列的全局表示。
ViT模型架构特点
视觉Transformer(ViT)模型在处理图像时,首先将输入图像分割成固定大小的patch,然后将这些patch线性投影为token序列。与传统NLP中的Transformer不同,ViT在处理视觉数据时有几个关键特点:
- Patch Embedding:将图像分割为16x16或32x32的patch
- 位置编码:为每个patch添加位置信息
- CLS Token:可选的分类token,聚合全局信息
特征提取中的常见问题
在Sapiens项目中,当使用预训练ViT模型提取特征时,开发者可能会观察到输出张量的形状为[1, 1536, 64, 64]。这个形状对应的是(batch_size, channels, height, width)格式的特征图,而非传统的序列形式。
这种情况通常发生在模型配置中设置了out_type='featmap'参数时。这种输出格式更适合需要空间信息的任务,如目标检测或语义分割。
获取CLS Token的解决方案
要获取CLS Token,需要理解模型的具体配置。在Sapiens项目中,ViT模型的配置通常包含以下关键参数:
with_cls_token=False, # 是否使用CLS Token
out_type='featmap', # 输出类型为特征图格式
如果with_cls_token设置为False,则模型不会生成传统的CLS Token。此时,可以考虑以下替代方案:
- 全局平均池化:对特征图在空间维度进行平均,获得全局表示
- 自适应池化:将特征图池化为固定大小的向量
- 修改模型配置:重新配置模型以包含CLS Token
实际应用建议
对于需要CLS Token的下游任务,如分类任务,建议:
- 检查模型配置文件,确认
with_cls_token和out_type参数 - 如果必须使用CLS Token,可以考虑修改模型配置或使用其他预训练权重
- 当无法获取CLS Token时,全局池化是一个有效的替代方案
技术实现细节
在代码实现层面,可以通过以下方式处理特征图输出:
# 假设features的形状为[1, 1536, 64, 64]
features = model(input_image)
# 全局平均池化替代CLS Token
global_features = features.mean(dim=[2, 3]) # 形状变为[1, 1536]
# 或者使用最大池化
global_features = features.amax(dim=[2, 3])
这种方法虽然不同于传统的CLS Token,但在许多实际应用中表现相当,且计算效率更高。
总结
在Sapiens项目中使用ViT模型时,理解模型的输出格式和配置参数至关重要。当遇到无法直接获取CLS Token的情况时,开发者有多种替代方案可以选择。根据具体任务需求,合理选择特征提取和处理方式,可以充分发挥预训练模型的性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00