Vision Transformer中的CLS Token机制解析
2025-05-13 12:21:54作者:傅爽业Veleda
在PyTorch Vision库的Vision Transformer(ViT)实现中,有一个关键设计引起了开发者关注——模型仅选择特征张量的第一个维度作为最终输出。本文将深入解析这一设计背后的原理及其在计算机视觉任务中的应用价值。
CLS Token的起源与作用
CLS(Classification) Token概念最早来源于自然语言处理领域的Transformer模型BERT。在ViT中,这一机制被借鉴并应用于视觉任务:
- 位置特性:CLS Token被预先添加到输入序列的最前面位置
- 全局表征:通过自注意力机制,CLS Token能够聚合整个图像的所有区域信息
- 分类专用:专门用于下游分类任务的特征表示
ViT中的具体实现
在PyTorch Vision的ViT实现中,模型处理流程如下:
- 输入图像被分割为多个patch(如16×16)
- 所有patch经过线性投影得到patch embedding
- 在序列开头添加CLS Token和位置编码
- 通过多层Transformer编码器处理
- 最终只提取CLS Token对应的特征作为分类依据
以ViT-B/16模型为例:
- 输入图像划分为14×14=196个patch
- 加上CLS Token后,序列长度为197
- 每个token的特征维度为768
- 最终输出形状为[B,768],可直接接入分类头
技术优势分析
相比传统CNN的全局池化方法,CLS Token机制具有独特优势:
- 动态特征聚合:通过自注意力机制动态决定各区域的重要性权重
- 位置感知:保留了空间位置信息,不同于简单的平均池化
- 端到端训练:分类特征直接从原始数据学习,无需手工设计池化策略
替代方案的探讨
虽然CLS Token是ViT的标准做法,但研究社区也探索了其他特征聚合方式:
-
全局平均池化(GAP):对所有patch特征取平均
- 优点:利用全部空间信息
- 缺点:可能稀释重要区域特征
-
多Token融合:结合CLS Token和其他patch特征
- 如CLS Token + GAP的混合方法
- 可能提升模型鲁棒性但增加计算成本
实际应用建议
对于大多数分类任务,CLS Token已经能够提供优秀的特征表示。开发者可根据具体需求考虑:
- 标准ViT:直接使用PyTorch Vision的默认实现
- 特定场景:可尝试修改模型头部,实验不同聚合策略
- 计算效率:CLS Token方案在推理时只需处理单一向量,效率较高
理解这一设计有助于开发者更好地使用和定制Vision Transformer模型,在保持模型性能的同时满足特定应用场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26