TensorRT-LLM后端在Triton推理服务器上的部署指南
2024-09-22 00:07:17作者:胡易黎Nicole
项目介绍
TensorRT-LLM后端是专为在Triton推理服务器上部署TensorRT-LLM模型设计的一个组件。它实现了高效的服务逻辑,支持飞行中批处理(inflight batching)、分页注意力和其他优化特性,使得大型语言模型能够更有效地运行在GPU上。通过这个后端,开发者可以轻松地将基于TensorRT编译的LLM模型集成到高性能的推理服务中。
项目快速启动
环境准备
确保您的系统已安装Docker,并且支持GPU执行。接下来,遵循以下步骤来快速启动一个使用TensorRT-LLM后端的Triton服务器实例:
-
克隆仓库及更新子模块:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git cd tensorrtllm_backend git submodule update --init --recursive git lfs install git lfs pull -
启动Triton容器: 替换
<xx.yy>为您想要使用的Triton版本号,例如24.07:docker run --rm -it --net host --shm-size=2g \ --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \ -v ${PWD}:/tensorrtllm_backend \ -v /path/to/engines:/engines \ nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 -
准备模型引擎: 根据TensorRT-LLM仓库中的指南,准备模型的TensorRT引擎。以GPT模型为例:
cd tensorrt_llm/examples/gpt # 下载权重并转换 git clone https://huggingface.co/gpt2-medium gpt2 ... # 继续后续的权重转换指令 -
设置模型仓库: 将示例模型复制到Triton模型仓库并配置模型:
mkdir -p triton_model_repo cp -r all_models/inflight_batcher_llm/* triton_model_repo/ # 配置模型详情,如调整以下脚本中的参数
启动推理服务
使用之前准备的配置,启动Triton服务器并提供必要的环境变量:
# 假设fill_template.py用于生成配置文件
TRITON_MODEL_REPO=/path/to/triton_model_repo
ENGINES_DIR=/path/to/engines
... # 设置其他必要变量
bash your_launch_script.sh
确保替换your_launch_script.sh为实际用于启动服务器的脚本路径,该脚本应该包含了上述环境变量的定义和Triton服务器的启动命令。
应用案例和最佳实践
- 文本生成: 利用TensorRT-LLM后端,您可以快速搭建一个文本生成服务,通过发送请求给部署了语言模型的Triton服务器,获取自动完成的文本。
- 低延迟推理: 高效的批处理策略(
inflight_fused_batching)可以在保证服务质量的同时降低响应时间。 - 资源管理: 结合多GPU和MIG支持,实现模型并行和资源优化,提高单节点或多节点的吞吐量。
典型生态项目
虽然具体生态项目未直接提及,但TensorRT-LLM后端紧密集成于Triton推理服务器生态系统中。任何依赖Triton进行大规模机器学习模型推理的项目都可能成为其生态的一部分。比如,在云服务、聊天机器人开发、自动化文本摘要等应用场景中,采用此类后端技术栈的解决方案广泛存在。开发者可以通过定制化BLS(业务逻辑脚本)和Ensemble模型进一步扩展其功能,以适应特定的行业需求或场景。
此教程提供了快速入门的指导,详细的部署和配置流程需参考TensorRT-LLM后端的官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
617
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258