TensorRT-LLM后端在Triton推理服务器上的部署指南
2024-09-22 23:21:54作者:胡易黎Nicole
项目介绍
TensorRT-LLM后端是专为在Triton推理服务器上部署TensorRT-LLM模型设计的一个组件。它实现了高效的服务逻辑,支持飞行中批处理(inflight batching)、分页注意力和其他优化特性,使得大型语言模型能够更有效地运行在GPU上。通过这个后端,开发者可以轻松地将基于TensorRT编译的LLM模型集成到高性能的推理服务中。
项目快速启动
环境准备
确保您的系统已安装Docker,并且支持GPU执行。接下来,遵循以下步骤来快速启动一个使用TensorRT-LLM后端的Triton服务器实例:
-
克隆仓库及更新子模块:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git cd tensorrtllm_backend git submodule update --init --recursive git lfs install git lfs pull -
启动Triton容器: 替换
<xx.yy>为您想要使用的Triton版本号,例如24.07:docker run --rm -it --net host --shm-size=2g \ --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \ -v ${PWD}:/tensorrtllm_backend \ -v /path/to/engines:/engines \ nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 -
准备模型引擎: 根据TensorRT-LLM仓库中的指南,准备模型的TensorRT引擎。以GPT模型为例:
cd tensorrt_llm/examples/gpt # 下载权重并转换 git clone https://huggingface.co/gpt2-medium gpt2 ... # 继续后续的权重转换指令 -
设置模型仓库: 将示例模型复制到Triton模型仓库并配置模型:
mkdir -p triton_model_repo cp -r all_models/inflight_batcher_llm/* triton_model_repo/ # 配置模型详情,如调整以下脚本中的参数
启动推理服务
使用之前准备的配置,启动Triton服务器并提供必要的环境变量:
# 假设fill_template.py用于生成配置文件
TRITON_MODEL_REPO=/path/to/triton_model_repo
ENGINES_DIR=/path/to/engines
... # 设置其他必要变量
bash your_launch_script.sh
确保替换your_launch_script.sh为实际用于启动服务器的脚本路径,该脚本应该包含了上述环境变量的定义和Triton服务器的启动命令。
应用案例和最佳实践
- 文本生成: 利用TensorRT-LLM后端,您可以快速搭建一个文本生成服务,通过发送请求给部署了语言模型的Triton服务器,获取自动完成的文本。
- 低延迟推理: 高效的批处理策略(
inflight_fused_batching)可以在保证服务质量的同时降低响应时间。 - 资源管理: 结合多GPU和MIG支持,实现模型并行和资源优化,提高单节点或多节点的吞吐量。
典型生态项目
虽然具体生态项目未直接提及,但TensorRT-LLM后端紧密集成于Triton推理服务器生态系统中。任何依赖Triton进行大规模机器学习模型推理的项目都可能成为其生态的一部分。比如,在云服务、聊天机器人开发、自动化文本摘要等应用场景中,采用此类后端技术栈的解决方案广泛存在。开发者可以通过定制化BLS(业务逻辑脚本)和Ensemble模型进一步扩展其功能,以适应特定的行业需求或场景。
此教程提供了快速入门的指导,详细的部署和配置流程需参考TensorRT-LLM后端的官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134