TensorRT-LLM后端在Triton推理服务器上的部署指南
2024-09-22 16:48:01作者:胡易黎Nicole
项目介绍
TensorRT-LLM后端是专为在Triton推理服务器上部署TensorRT-LLM模型设计的一个组件。它实现了高效的服务逻辑,支持飞行中批处理(inflight batching)、分页注意力和其他优化特性,使得大型语言模型能够更有效地运行在GPU上。通过这个后端,开发者可以轻松地将基于TensorRT编译的LLM模型集成到高性能的推理服务中。
项目快速启动
环境准备
确保您的系统已安装Docker,并且支持GPU执行。接下来,遵循以下步骤来快速启动一个使用TensorRT-LLM后端的Triton服务器实例:
-
克隆仓库及更新子模块:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git cd tensorrtllm_backend git submodule update --init --recursive git lfs install git lfs pull -
启动Triton容器: 替换
<xx.yy>为您想要使用的Triton版本号,例如24.07:docker run --rm -it --net host --shm-size=2g \ --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \ -v ${PWD}:/tensorrtllm_backend \ -v /path/to/engines:/engines \ nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3 -
准备模型引擎: 根据TensorRT-LLM仓库中的指南,准备模型的TensorRT引擎。以GPT模型为例:
cd tensorrt_llm/examples/gpt # 下载权重并转换 git clone https://huggingface.co/gpt2-medium gpt2 ... # 继续后续的权重转换指令 -
设置模型仓库: 将示例模型复制到Triton模型仓库并配置模型:
mkdir -p triton_model_repo cp -r all_models/inflight_batcher_llm/* triton_model_repo/ # 配置模型详情,如调整以下脚本中的参数
启动推理服务
使用之前准备的配置,启动Triton服务器并提供必要的环境变量:
# 假设fill_template.py用于生成配置文件
TRITON_MODEL_REPO=/path/to/triton_model_repo
ENGINES_DIR=/path/to/engines
... # 设置其他必要变量
bash your_launch_script.sh
确保替换your_launch_script.sh为实际用于启动服务器的脚本路径,该脚本应该包含了上述环境变量的定义和Triton服务器的启动命令。
应用案例和最佳实践
- 文本生成: 利用TensorRT-LLM后端,您可以快速搭建一个文本生成服务,通过发送请求给部署了语言模型的Triton服务器,获取自动完成的文本。
- 低延迟推理: 高效的批处理策略(
inflight_fused_batching)可以在保证服务质量的同时降低响应时间。 - 资源管理: 结合多GPU和MIG支持,实现模型并行和资源优化,提高单节点或多节点的吞吐量。
典型生态项目
虽然具体生态项目未直接提及,但TensorRT-LLM后端紧密集成于Triton推理服务器生态系统中。任何依赖Triton进行大规模机器学习模型推理的项目都可能成为其生态的一部分。比如,在云服务、聊天机器人开发、自动化文本摘要等应用场景中,采用此类后端技术栈的解决方案广泛存在。开发者可以通过定制化BLS(业务逻辑脚本)和Ensemble模型进一步扩展其功能,以适应特定的行业需求或场景。
此教程提供了快速入门的指导,详细的部署和配置流程需参考TensorRT-LLM后端的官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322