LangGraph SDK 0.1.59版本发布:全面支持自定义HTTP头功能
LangGraph是一个用于构建和运行基于语言模型的工作流的Python库,它提供了强大的工具来创建复杂的AI应用。该项目通过SDK封装了与后端服务的交互,使开发者能够专注于业务逻辑的实现。
在最新的0.1.59版本中,LangGraph SDK进行了重要升级,全面增强了自定义HTTP头支持能力。这一改进为开发者提供了更大的灵活性和控制权,特别是在需要自定义认证、跟踪请求或传递特定元数据的场景中。
自定义HTTP头支持详解
核心HTTP客户端增强
基础HTTP客户端类(HttpClient和SyncHttpClient)现在全面支持自定义头信息。开发者可以在所有HTTP方法(get、post、put、patch、delete和stream)中传递额外的headers参数。这一改进不仅增加了灵活性,还确保了头信息的正确合并处理,避免覆盖系统默认头。
各功能模块的统一支持
新版本在所有功能模块中都实现了headers参数支持,包括:
-
助手管理(AssistantsClient):在创建、获取、更新、删除和搜索助手时,可以传递自定义头信息。例如,可以添加认证令牌或跟踪标识。
-
线程管理(ThreadsClient):线程相关的所有操作,包括创建、状态管理和历史记录获取,现在都支持自定义头。这对于多租户系统特别有用。
-
运行控制(RunsClient):运行创建、状态监控和结果获取等操作支持自定义头,便于实现细粒度的访问控制和审计跟踪。
-
定时任务(CronClient):定时任务的创建、查询和管理操作支持自定义头,方便集成到现有监控系统中。
-
存储操作(StoreClient):键值存储的读写和命名空间管理支持自定义头,为数据隔离和安全控制提供了更多可能性。
技术实现亮点
-
头信息合并策略:SDK采用智能的头信息合并策略,确保开发者提供的自定义头不会意外覆盖系统必需的头信息。
-
全栈一致性:无论是同步还是异步客户端,都实现了相同的headers支持,保证了API使用体验的一致性。
-
向后兼容:新功能以可选参数形式添加,完全不影响现有代码的运行。
实际应用场景
-
认证与授权:通过自定义Authorization头实现灵活的认证机制,支持多种认证方案。
-
请求跟踪:添加X-Request-ID等跟踪头,便于分布式系统中的请求追踪和调试。
-
多租户支持:通过自定义头传递租户标识,实现数据隔离和个性化处理。
-
A/B测试:使用自定义头控制功能开关或实验分组,实现无侵入式的功能测试。
-
性能监控:添加性能采集标记,便于服务端记录和处理时间等指标。
升级建议
对于现有项目,升级到0.1.59版本是无缝的,不需要任何代码修改。如果需要使用自定义头功能,只需在调用相关方法时添加headers参数即可。建议开发团队评估是否有需要传递自定义元数据的场景,充分利用这一新特性来增强系统的灵活性和可观测性。
这一版本的发布进一步巩固了LangGraph作为构建复杂语言模型应用的首选工具地位,为开发者提供了更多控制权和集成可能性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









