Torch 残差网络项目教程
2024-09-17 05:46:37作者:邵娇湘
1. 项目介绍
Torch 残差网络项目(Torch Residual Networks)是一个基于 Torch 框架实现的深度残差学习网络的开源项目。该项目旨在实现 Kaiming He 等人在论文 "Deep Residual Learning for Image Recognition" 中提出的深度残差学习模型,该模型在 2015 年的 ILSVRC 和 COCO 挑战赛中取得了优异的成绩。
项目的主要功能包括:
- 实现了 CIFAR 数据集上的残差网络训练。
- 提供了多种残差网络架构的实验结果。
- 支持不同的训练策略和优化器。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- CUDA 7.0 或更高版本
- CuDNN v4
- Torch
- Torch CUDNN V4 库
- nninit
安装步骤
-
克隆项目仓库:
git clone https://github.com/gcr/torch-residual-networks.git cd torch-residual-networks -
安装 Torch CUDNN V4 库:
git clone https://github.com/soumith/cudnn.torch cd cudnn.torch git checkout R4 luarocks make -
安装 nninit:
luarocks install nninit
数据准备
下载 CIFAR-10 数据集,并将其解压到指定目录。
训练模型
使用以下命令启动 CIFAR-10 数据集的训练:
th train-cifar.lua --dataRoot <cifar-data-directory>
3. 应用案例和最佳实践
CIFAR-10 数据集上的模型训练
项目中提供了在 CIFAR-10 数据集上训练残差网络的脚本 train-cifar.lua。通过调整不同的模型参数和训练策略,可以获得不同的实验结果。
模型架构实验
项目中还提供了多种模型架构的实验,包括不同深度的残差网络、不同的残差块设计等。这些实验结果可以帮助用户更好地理解残差网络的设计原理和优化策略。
训练策略实验
项目支持多种训练策略,如 SGD、RMSprop、Adagrad 等。用户可以通过实验比较不同优化器在残差网络训练中的表现,选择最适合自己任务的优化器。
4. 典型生态项目
PyTorch 残差网络
PyTorch 也提供了残差网络的实现,并且支持更多的模型架构和预训练模型。用户可以通过 PyTorch 的官方文档和示例代码,快速上手并应用残差网络。
CaffeNet 基准测试
项目中引用了 @ducha-aiki 在 ImageNet 数据集上的初步实验结果,展示了不同模型架构在 ImageNet 上的表现。这些结果可以作为用户在设计自己的残差网络时的参考。
其他相关项目
- TorchVision: 提供了丰富的图像处理和计算机视觉任务的工具和模型。
- TorchText: 提供了文本处理和自然语言处理任务的工具和模型。
通过这些生态项目,用户可以更全面地应用残差网络解决各种实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178