Torch 残差网络项目教程
2024-09-17 18:09:30作者:邵娇湘
1. 项目介绍
Torch 残差网络项目(Torch Residual Networks)是一个基于 Torch 框架实现的深度残差学习网络的开源项目。该项目旨在实现 Kaiming He 等人在论文 "Deep Residual Learning for Image Recognition" 中提出的深度残差学习模型,该模型在 2015 年的 ILSVRC 和 COCO 挑战赛中取得了优异的成绩。
项目的主要功能包括:
- 实现了 CIFAR 数据集上的残差网络训练。
- 提供了多种残差网络架构的实验结果。
- 支持不同的训练策略和优化器。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- CUDA 7.0 或更高版本
- CuDNN v4
- Torch
- Torch CUDNN V4 库
- nninit
安装步骤
-
克隆项目仓库:
git clone https://github.com/gcr/torch-residual-networks.git cd torch-residual-networks -
安装 Torch CUDNN V4 库:
git clone https://github.com/soumith/cudnn.torch cd cudnn.torch git checkout R4 luarocks make -
安装 nninit:
luarocks install nninit
数据准备
下载 CIFAR-10 数据集,并将其解压到指定目录。
训练模型
使用以下命令启动 CIFAR-10 数据集的训练:
th train-cifar.lua --dataRoot <cifar-data-directory>
3. 应用案例和最佳实践
CIFAR-10 数据集上的模型训练
项目中提供了在 CIFAR-10 数据集上训练残差网络的脚本 train-cifar.lua。通过调整不同的模型参数和训练策略,可以获得不同的实验结果。
模型架构实验
项目中还提供了多种模型架构的实验,包括不同深度的残差网络、不同的残差块设计等。这些实验结果可以帮助用户更好地理解残差网络的设计原理和优化策略。
训练策略实验
项目支持多种训练策略,如 SGD、RMSprop、Adagrad 等。用户可以通过实验比较不同优化器在残差网络训练中的表现,选择最适合自己任务的优化器。
4. 典型生态项目
PyTorch 残差网络
PyTorch 也提供了残差网络的实现,并且支持更多的模型架构和预训练模型。用户可以通过 PyTorch 的官方文档和示例代码,快速上手并应用残差网络。
CaffeNet 基准测试
项目中引用了 @ducha-aiki 在 ImageNet 数据集上的初步实验结果,展示了不同模型架构在 ImageNet 上的表现。这些结果可以作为用户在设计自己的残差网络时的参考。
其他相关项目
- TorchVision: 提供了丰富的图像处理和计算机视觉任务的工具和模型。
- TorchText: 提供了文本处理和自然语言处理任务的工具和模型。
通过这些生态项目,用户可以更全面地应用残差网络解决各种实际问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881