Burr项目中的动作简化设计:减少中间结果返回的冗余代码
2025-07-10 13:41:46作者:宣聪麟
在Burr项目的工作流设计中,动作(Action)是构建状态转换逻辑的基本单元。传统实现中,每个动作函数需要返回一个包含中间结果和更新后状态的元组,这导致了大量重复性代码。本文将深入分析这一设计痛点及其解决方案。
传统动作实现的痛点
在Burr的原始设计中,一个典型的动作函数需要遵循以下模式:
@action(reads=['input_var'], writes=['output_var'])
def simple_action(state: State) -> tuple[dict, State]:
output_var = _compute(state["input_var"])
result = {"output_var" : output_var}
return result, state.update(**result)
这种实现存在几个明显问题:
- 代码冗余:开发者需要重复声明相同的变量名多次
- 易错性:手动维护结果字典和状态更新容易出错
- 可读性差:业务逻辑被大量样板代码淹没
简化设计的核心思想
新方案的核心是让开发者专注于业务逻辑本身,而非状态管理的机械性工作。通过两种方式实现:
- 自动状态更新:根据返回结果自动应用状态变更
- 简化返回签名:允许只返回更新后的状态对象
具体实现方案
方案一:仅返回状态对象
@action(reads=['input_var'], writes=['output_var'])
def simple_action(state: State) -> State:
output_var = _compute(state['input_var'])
return state.update(output_var=output_var)
这种方案完全移除了中间结果的概念,适用于不需要在UI中展示中间计算结果的场景。
方案二:声明式状态更新
@action(
reads=['input_var'],
writes=[update('output_var'), append('output_var_list')]
)
def simple_action(state: State) -> dict:
return {"output_var" : _compute(state['input_var'])}
这种方案通过装饰器中的声明式配置,指定如何将返回结果应用到状态上,支持多种更新操作:
update:直接更新状态值append:向列表追加值increment:对数值进行增量更新
技术实现考量
在底层实现上,Burr需要处理几个关键问题:
- 类型推断:通过函数返回类型自动判断采用哪种处理模式
- 状态更新合并:确保多个更新操作按正确顺序执行
- 错误处理:验证返回结果与声明配置的匹配性
实际应用建议
对于不同场景,推荐以下使用方式:
- 简单状态更新:采用仅返回State对象的简化形式
- 复杂转换逻辑:使用传统元组返回形式保留中间结果
- 批量操作:采用声明式配置减少重复代码
总结
Burr项目的这一改进显著提升了开发体验,使得状态管理代码更加简洁直观。通过灵活支持多种动作签名,既保留了原有功能的强大性,又为简单场景提供了更优雅的编码方式。这种设计思路也体现了优秀框架应有的特质:在提供强大功能的同时,尽可能减少开发者的认知负担。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218