ONNXRuntime中BERT模型导出为ONNX格式输出NaN问题的分析与解决
问题背景
在使用ONNXRuntime进行BERT模型推理时,开发者经常会遇到模型输出为NaN(Not a Number)的问题。这种情况通常发生在将Hugging Face Transformers中的BERT模型导出为ONNX格式后,使用C++接口进行推理时。本文将从技术角度深入分析这一问题的成因,并提供有效的解决方案。
问题现象
开发者报告了以下典型现象:
- 使用Python的transformers.onnx工具导出BERT模型到ONNX格式
- 使用ONNX Runtime的C++接口进行推理时,CPU上输出为"-nan",GPU上输出为"nan"
- 该问题在ONNX Runtime的多个版本(1.11.1至1.17.1)中均存在
根本原因分析
经过技术分析,导致这一问题的可能原因包括:
-
输入张量顺序错误:在导出ONNX模型时,attention_mask可能与其他输入张量顺序错位。ONNX模型对输入顺序有严格要求,顺序不匹配会导致计算异常。
-
模型导出工具版本问题:早期版本的transformers.onnx工具可能存在导出逻辑缺陷,导致生成的ONNX模型结构不完整或参数异常。
-
数值稳定性问题:BERT模型中的softmax或layer normalization等操作在特定输入下可能导致数值不稳定,产生NaN。
-
执行提供程序兼容性问题:不同版本的ONNX Runtime对CUDA执行提供程序的支持可能存在差异。
解决方案
1. 验证ONNX模型结构
使用Netron工具可视化检查导出的ONNX模型:
- 确认输入节点名称和顺序是否符合预期
- 检查模型中的attention_mask输入位置是否正确
- 验证模型各层参数是否完整
2. 升级相关工具版本
建议采取以下升级措施:
- 将Hugging Face Transformers升级到最新稳定版
- 使用ONNX Runtime 1.21或更高版本
- 确保CUDA版本与ONNX Runtime兼容(建议CUDA 11.x)
3. 检查输入数据
确保推理时的输入数据:
- 数据类型与模型预期一致(通常是float32或int64)
- 数值范围合理(避免极端值导致数值不稳定)
- 张量形状与模型输入要求匹配
4. 使用官方验证脚本
ONNX Runtime提供了BERT模型的验证脚本,可以用来确认模型导出和推理的正确性:
python -m onnxruntime.transformers.models.bert.eval_squad
最佳实践建议
-
标准化导出流程:建立统一的模型导出流程,记录使用的工具版本和参数。
-
版本控制:对ONNX模型文件进行版本管理,记录导出环境和参数。
-
渐进式验证:从简单输入开始逐步验证模型,先确保小批量数据能正确推理。
-
性能监控:实现推理过程的数值监控,及时发现异常值。
-
跨平台测试:在CPU和GPU环境下分别测试模型,确保兼容性。
总结
BERT模型导出为ONNX格式后出现NaN输出是一个典型的技术问题,通常与模型导出过程或推理环境配置有关。通过升级工具版本、仔细验证模型结构和输入数据,大多数情况下可以解决这一问题。开发者应当建立规范的模型导出和验证流程,以确保深度学习模型在不同平台间的顺利迁移和部署。
随着ONNX生态的不断成熟,这类问题的发生频率正在降低,但保持工具链的更新和标准化操作流程仍然是预防问题的有效手段。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









