ONNXRuntime中BERT模型导出为ONNX格式输出NaN问题的分析与解决
问题背景
在使用ONNXRuntime进行BERT模型推理时,开发者经常会遇到模型输出为NaN(Not a Number)的问题。这种情况通常发生在将Hugging Face Transformers中的BERT模型导出为ONNX格式后,使用C++接口进行推理时。本文将从技术角度深入分析这一问题的成因,并提供有效的解决方案。
问题现象
开发者报告了以下典型现象:
- 使用Python的transformers.onnx工具导出BERT模型到ONNX格式
- 使用ONNX Runtime的C++接口进行推理时,CPU上输出为"-nan",GPU上输出为"nan"
- 该问题在ONNX Runtime的多个版本(1.11.1至1.17.1)中均存在
根本原因分析
经过技术分析,导致这一问题的可能原因包括:
-
输入张量顺序错误:在导出ONNX模型时,attention_mask可能与其他输入张量顺序错位。ONNX模型对输入顺序有严格要求,顺序不匹配会导致计算异常。
-
模型导出工具版本问题:早期版本的transformers.onnx工具可能存在导出逻辑缺陷,导致生成的ONNX模型结构不完整或参数异常。
-
数值稳定性问题:BERT模型中的softmax或layer normalization等操作在特定输入下可能导致数值不稳定,产生NaN。
-
执行提供程序兼容性问题:不同版本的ONNX Runtime对CUDA执行提供程序的支持可能存在差异。
解决方案
1. 验证ONNX模型结构
使用Netron工具可视化检查导出的ONNX模型:
- 确认输入节点名称和顺序是否符合预期
- 检查模型中的attention_mask输入位置是否正确
- 验证模型各层参数是否完整
2. 升级相关工具版本
建议采取以下升级措施:
- 将Hugging Face Transformers升级到最新稳定版
- 使用ONNX Runtime 1.21或更高版本
- 确保CUDA版本与ONNX Runtime兼容(建议CUDA 11.x)
3. 检查输入数据
确保推理时的输入数据:
- 数据类型与模型预期一致(通常是float32或int64)
- 数值范围合理(避免极端值导致数值不稳定)
- 张量形状与模型输入要求匹配
4. 使用官方验证脚本
ONNX Runtime提供了BERT模型的验证脚本,可以用来确认模型导出和推理的正确性:
python -m onnxruntime.transformers.models.bert.eval_squad
最佳实践建议
-
标准化导出流程:建立统一的模型导出流程,记录使用的工具版本和参数。
-
版本控制:对ONNX模型文件进行版本管理,记录导出环境和参数。
-
渐进式验证:从简单输入开始逐步验证模型,先确保小批量数据能正确推理。
-
性能监控:实现推理过程的数值监控,及时发现异常值。
-
跨平台测试:在CPU和GPU环境下分别测试模型,确保兼容性。
总结
BERT模型导出为ONNX格式后出现NaN输出是一个典型的技术问题,通常与模型导出过程或推理环境配置有关。通过升级工具版本、仔细验证模型结构和输入数据,大多数情况下可以解决这一问题。开发者应当建立规范的模型导出和验证流程,以确保深度学习模型在不同平台间的顺利迁移和部署。
随着ONNX生态的不断成熟,这类问题的发生频率正在降低,但保持工具链的更新和标准化操作流程仍然是预防问题的有效手段。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00