首页
/ CS205-ImageStitching 项目教程

CS205-ImageStitching 项目教程

2024-09-14 12:06:07作者:乔或婵

1. 项目介绍

CS205-ImageStitching 是一个用于实时图像拼接的开源项目,旨在通过并行计算技术加速图像拼接算法,从而实现从相邻摄像头流式传输视频并生成全景视图。该项目由哈佛大学 CS205 计算科学基础课程的团队开发,团队成员包括 Weihang Zhang、Xuefeng Peng、Jiacheng Shi 和 Ziqi Guo。

图像拼接(Image Stitching)是将多个具有重叠视野的摄影图像组合成一个分段全景图或高分辨率图像的过程。该项目的主要目标是实现实时图像拼接,特别是在处理高分辨率视频时,通过并行化技术提高处理速度,确保视频流的流畅性。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统满足以下依赖要求:

  • GCC 6 或更高版本
  • OpenCV 3.4.0 或更高版本
  • pkg-config

2.2 编译项目

2.2.1 顺序版本

cd surf_sequential/
g++ -std=c++11 -fpermissive -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`

2.2.2 OpenMP 版本

cd surf_omp/
g++ -fopenmp -std=c++11 -fpermissive -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`

2.2.3 OpenACC 版本

cd surf_openacc/
source env.sh
pgc++ -acc -ta=tesla:cc60 -Minfo -std=c++11 -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`

2.3 运行测试用例

编译完成后,您可以通过以下命令运行测试用例:

sh sample_test.sh

3. 应用案例和最佳实践

3.1 静态图像匹配

使用以下命令运行静态图像匹配:

./test -m 1 -L path/to/image1.jpg -R path/to/image2.jpg

3.2 实时视频拼接

使用以下命令从摄像头流式传输视频并进行实时拼接:

./test -m 2 -r 720 -s

3.3 本地视频文件拼接

使用以下命令处理本地视频文件并进行拼接:

./test -m 3 -L path/to/video1.mp4 -R path/to/video2.mp4

4. 典型生态项目

4.1 OpenCV

OpenCV 是一个开源的计算机视觉库,广泛用于图像处理和计算机视觉任务。CS205-ImageStitching 项目依赖 OpenCV 进行图像处理和特征检测。

4.2 SURF

SURF(Speeded-Up Robust Features)是一种用于图像特征检测和描述的算法,CS205-ImageStitching 项目中使用了 SURF 算法进行关键点检测和描述。

4.3 RANSAC

RANSAC(Random Sample Consensus)是一种用于估计模型参数的迭代方法,CS205-ImageStitching 项目中使用 RANSAC 算法进行变换矩阵的估计。

通过这些生态项目的支持,CS205-ImageStitching 项目能够高效地实现实时图像拼接功能。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0