Locust性能测试工具2.35.0版本发布:Web UI功能增强
项目简介
Locust是一个开源的负载测试工具,采用Python编写,以其轻量级和易用性著称。它允许开发者使用Python代码定义用户行为,并通过分布式方式模拟数百万用户并发访问系统。Locust最大的特点是提供了直观的Web界面,可以实时查看测试数据和结果。
版本亮点
最新发布的2.35.0版本主要针对Web UI进行了多项功能增强,提升了用户体验和功能性。这些改进使得Locust在复杂测试场景下的表现更加出色。
核心功能更新
1. 外部API请求支持基础URL配置
新版本增加了对基础URL的可选配置功能,使得测试针对外部API的请求更加便捷。开发者现在可以设置一个基础URL,所有测试请求都会基于这个URL发起,避免了在每个请求中重复输入完整URL的麻烦。
这项改进特别适合微服务架构下的API测试场景,当需要测试同一域名下的多个端点时,可以显著减少代码冗余。
2. 测试报告增加Profile信息展示
2.35.0版本在HTML报告中新增了Profile参数的显示功能。Profile是Locust中用于定义不同测试场景配置的重要参数,现在这些信息会直观地展示在测试报告中,方便测试人员快速了解当前测试的具体配置情况。
3. 历史记录回退功能
Web UI现在支持历史记录回退功能,用户可以更方便地查看之前的测试结果和状态。这项改进增强了测试结果的可追溯性,特别适合需要对比多次测试结果的场景。
4. 安全认证增强
新版本为停止和重置请求增加了凭证支持,提升了操作的安全性。在分布式测试环境中,这一改进可以有效防止未经授权的操作,确保测试过程的安全可控。
技术细节
从技术实现角度看,这些改进主要涉及前端Vite构建工具的升级(从6.2.5到6.2.6),以及Web UI组件的功能扩展。特别是凭证支持功能的实现,涉及到前后端的安全通信机制优化。
适用场景
这些新特性特别适合以下场景:
- 需要长期运行的稳定性测试
- 多环境配置的API测试
- 需要严格权限控制的测试环境
- 需要对比历史测试数据的性能调优
总结
Locust 2.35.0版本虽然没有引入重大架构变化,但在用户体验和功能性方面的改进非常实用。特别是对Web UI的持续优化,使得这个本就以易用性著称的工具更加完善。对于性能测试工程师和开发人员来说,这些改进将进一步提升测试效率和结果的可读性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00