Locust性能测试中UI响应时间显示异常问题分析
2025-05-07 10:03:03作者:庞眉杨Will
问题现象
在使用Locust进行性能测试时,用户遇到了UI界面中响应时间图表显示异常的问题。具体表现为:
- 当被测系统CPU使用率达到100%时,Locust的Web UI中99百分位响应时间曲线停止更新,呈现一条直线
- 平均响应时间曲线显示正常
- 统计图表中的数据准确无误,与UI显示不一致
环境配置
用户最初使用的是Docker Compose部署方案,配置如下:
- Locust版本:2.19.1
- 部署方式:1个master节点和2个worker节点
- 被测系统:运行在Docker容器中的本地服务
- 主机配置:2核CPU/8GB内存(升级到4核/16GB后问题依旧)
问题排查过程
初步分析
通过用户提供的截图和描述,可以观察到:
- 统计数据显示被测系统响应时间明显增加(从约200ms上升到3000ms)
- 但UI图表中的99百分位曲线却保持平稳
- 问题仅在本地Docker部署的被测系统CPU满载时出现
缩小问题范围
技术专家建议用户进行最小化复现测试:
- 不使用Docker部署Locust,直接运行Python版本
- 简化测试脚本,去除复杂逻辑
- 使用最新版Locust(2.20.1)
验证结果
用户按照建议测试后发现:
- 使用简化脚本和最新版Locust后,问题消失
- 平均响应时间曲线显示正常
- 99百分位曲线也能正确反映系统性能变化
- 被测系统CPU满载警告不再出现
问题根源
综合用户反馈和技术分析,可以得出以下结论:
- 版本兼容性问题:旧版Locust(2.19.1)在分布式模式下存在UI显示bug
- 资源竞争影响:当被测系统资源耗尽时,Locust worker节点的数据上报可能受到影响
- Docker网络延迟:容器间通信可能加剧了数据同步问题
解决方案
- 升级Locust版本:使用最新稳定版(2.20.1或更高)
- 优化测试环境:
- 确保被测系统有足够资源
- 监控系统资源使用情况
- 考虑增加Locust worker节点数量
- 简化测试配置:在可能的情况下,使用非Docker环境进行初步测试
技术建议
对于性能测试实践,建议:
- 始终保持测试工具为最新稳定版本
- 测试环境应尽可能接近生产环境
- 监控不仅限于被测系统,还应包括测试工具本身
- 复杂环境下(如Docker集群)要特别注意网络和资源分配
通过这次问题排查,我们验证了Locust在最新版本中的稳定性,同时也展示了性能测试中环境配置的重要性。正确的工具版本和合理的资源配置是获得准确测试结果的基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212