Locust性能测试中UI响应时间显示异常问题分析
2025-05-07 19:20:05作者:庞眉杨Will
问题现象
在使用Locust进行性能测试时,用户遇到了UI界面中响应时间图表显示异常的问题。具体表现为:
- 当被测系统CPU使用率达到100%时,Locust的Web UI中99百分位响应时间曲线停止更新,呈现一条直线
- 平均响应时间曲线显示正常
- 统计图表中的数据准确无误,与UI显示不一致
环境配置
用户最初使用的是Docker Compose部署方案,配置如下:
- Locust版本:2.19.1
- 部署方式:1个master节点和2个worker节点
- 被测系统:运行在Docker容器中的本地服务
- 主机配置:2核CPU/8GB内存(升级到4核/16GB后问题依旧)
问题排查过程
初步分析
通过用户提供的截图和描述,可以观察到:
- 统计数据显示被测系统响应时间明显增加(从约200ms上升到3000ms)
- 但UI图表中的99百分位曲线却保持平稳
- 问题仅在本地Docker部署的被测系统CPU满载时出现
缩小问题范围
技术专家建议用户进行最小化复现测试:
- 不使用Docker部署Locust,直接运行Python版本
- 简化测试脚本,去除复杂逻辑
- 使用最新版Locust(2.20.1)
验证结果
用户按照建议测试后发现:
- 使用简化脚本和最新版Locust后,问题消失
- 平均响应时间曲线显示正常
- 99百分位曲线也能正确反映系统性能变化
- 被测系统CPU满载警告不再出现
问题根源
综合用户反馈和技术分析,可以得出以下结论:
- 版本兼容性问题:旧版Locust(2.19.1)在分布式模式下存在UI显示bug
- 资源竞争影响:当被测系统资源耗尽时,Locust worker节点的数据上报可能受到影响
- Docker网络延迟:容器间通信可能加剧了数据同步问题
解决方案
- 升级Locust版本:使用最新稳定版(2.20.1或更高)
- 优化测试环境:
- 确保被测系统有足够资源
- 监控系统资源使用情况
- 考虑增加Locust worker节点数量
- 简化测试配置:在可能的情况下,使用非Docker环境进行初步测试
技术建议
对于性能测试实践,建议:
- 始终保持测试工具为最新稳定版本
- 测试环境应尽可能接近生产环境
- 监控不仅限于被测系统,还应包括测试工具本身
- 复杂环境下(如Docker集群)要特别注意网络和资源分配
通过这次问题排查,我们验证了Locust在最新版本中的稳定性,同时也展示了性能测试中环境配置的重要性。正确的工具版本和合理的资源配置是获得准确测试结果的基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
581
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
366
仓颉编程语言运行时与标准库。
Cangjie
130
379
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205