Ragas项目:多评估模型集成降低评测偏差的技术探讨
2025-05-26 12:56:12作者:龚格成
背景与需求
在Ragas项目(一个用于评估检索增强生成系统质量的框架)中,评估模型的单一性可能导致评测结果存在偏差。近期社区提出了一项重要改进建议:支持同时使用多个评估模型进行综合评测,通过模型集成的方式降低单一模型带来的评估偏差。
技术现状分析
目前Ragas框架中,每个评估指标(如Faithfulness、ResponseRelevancy等)通常只绑定一个评估模型(LLM)。这种设计虽然简单直接,但存在以下潜在问题:
- 不同评估模型可能对相同回答给出不同评分
- 特定模型可能对某些类型的回答存在固有偏好
- 单一模型的评估结果缺乏鲁棒性
现有解决方案
实际上,当前版本的Ragas已经可以通过编程方式实现多模型评估。技术实现要点包括:
- 为每个评估模型创建独立的指标实例
- 使用模型名称作为指标名称后缀以区分不同模型的评估结果
- 在评估完成后手动汇总各模型的评分
示例代码结构如下:
metrics = [
[Faithfulness(
name=f"faithfulness_{llm.model_name}",
llm=LangchainLLMWrapper(llm),
) for llm in llms],
[ResponseRelevancy(
name=f"answer_relevance_{llm.model_name}",
llm=LangchainLLMWrapper(llm),
) for llm in llms],
]
未来改进方向
根据社区讨论,Ragas团队计划在下一主要版本中正式支持多评估模型集成功能。预期改进可能包括:
- 内置多模型评估支持,简化配置流程
- 提供多种评分聚合策略(平均、加权、投票等)
- 增加模型间一致性分析功能
- 优化评估结果的可视化展示
技术价值
多评估模型集成将带来以下技术优势:
- 降低偏差:通过模型多样性平衡单一模型的固有偏好
- 提高鲁棒性:减少因特定模型异常行为导致的评估失真
- 增强可信度:多模型一致认可的结果具有更高可信度
- 灵活扩展:支持根据需求动态调整评估模型组合
实施建议
对于希望现在就采用多模型评估的用户,建议:
- 选择3-5个不同架构或规模的评估模型
- 确保各模型在评估指标上的表现经过初步验证
- 设计合理的评分聚合策略
- 记录各模型的独立评估结果以便后续分析
这一改进将使Ragas在评估检索增强生成系统时提供更全面、可靠的评测结果,为系统优化提供更有价值的参考依据。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396