Ragas项目:多评估模型集成降低评测偏差的技术探讨
2025-05-26 12:56:12作者:龚格成
背景与需求
在Ragas项目(一个用于评估检索增强生成系统质量的框架)中,评估模型的单一性可能导致评测结果存在偏差。近期社区提出了一项重要改进建议:支持同时使用多个评估模型进行综合评测,通过模型集成的方式降低单一模型带来的评估偏差。
技术现状分析
目前Ragas框架中,每个评估指标(如Faithfulness、ResponseRelevancy等)通常只绑定一个评估模型(LLM)。这种设计虽然简单直接,但存在以下潜在问题:
- 不同评估模型可能对相同回答给出不同评分
- 特定模型可能对某些类型的回答存在固有偏好
- 单一模型的评估结果缺乏鲁棒性
现有解决方案
实际上,当前版本的Ragas已经可以通过编程方式实现多模型评估。技术实现要点包括:
- 为每个评估模型创建独立的指标实例
- 使用模型名称作为指标名称后缀以区分不同模型的评估结果
- 在评估完成后手动汇总各模型的评分
示例代码结构如下:
metrics = [
[Faithfulness(
name=f"faithfulness_{llm.model_name}",
llm=LangchainLLMWrapper(llm),
) for llm in llms],
[ResponseRelevancy(
name=f"answer_relevance_{llm.model_name}",
llm=LangchainLLMWrapper(llm),
) for llm in llms],
]
未来改进方向
根据社区讨论,Ragas团队计划在下一主要版本中正式支持多评估模型集成功能。预期改进可能包括:
- 内置多模型评估支持,简化配置流程
- 提供多种评分聚合策略(平均、加权、投票等)
- 增加模型间一致性分析功能
- 优化评估结果的可视化展示
技术价值
多评估模型集成将带来以下技术优势:
- 降低偏差:通过模型多样性平衡单一模型的固有偏好
- 提高鲁棒性:减少因特定模型异常行为导致的评估失真
- 增强可信度:多模型一致认可的结果具有更高可信度
- 灵活扩展:支持根据需求动态调整评估模型组合
实施建议
对于希望现在就采用多模型评估的用户,建议:
- 选择3-5个不同架构或规模的评估模型
- 确保各模型在评估指标上的表现经过初步验证
- 设计合理的评分聚合策略
- 记录各模型的独立评估结果以便后续分析
这一改进将使Ragas在评估检索增强生成系统时提供更全面、可靠的评测结果,为系统优化提供更有价值的参考依据。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K