RepViT 项目使用教程
项目介绍
RepViT 是一个开源项目,旨在从 Vision Transformer (ViT) 的角度重新审视移动设备上的卷积神经网络 (CNN)。该项目通过将 ViT 的高效架构设计融入到轻量级 CNN 中,实现了在移动设备上高性能和低延迟的平衡。RepViT 不仅在图像分类任务中表现出色,还在目标检测和实例分割等下游任务中展示了优越的性能。
项目快速启动
环境准备
首先,确保你已经安装了 Python 3.8 和 PyTorch。你可以使用以下命令创建一个虚拟环境并安装所需的依赖包:
conda create -n repvit python=3.8
conda activate repvit
pip install -r requirements.txt
数据准备
下载并解压 ImageNet 数据集,确保训练和验证数据分别位于 train
和 val
文件夹中:
wget http://image-net.org/path/to/imagenet.tar.gz
tar -xzvf imagenet.tar.gz
模型训练
使用以下命令在 8 个 GPU 上训练 RepViT-M0.9 模型:
python -m torch.distributed.launch --nproc_per_node=8 --master_port 12346 --use_env main.py --model repvit_m0_9 --data-path /path/to/imagenet --dist-eval
模型测试
使用以下命令测试训练好的 RepViT-M0.9 模型:
python main.py --eval --model repvit_m0_9 --resume /path/to/checkpoint.pth --data-path /path/to/imagenet
应用案例和最佳实践
图像分类
RepViT 在 ImageNet 数据集上的表现非常出色,能够在 iPhone 12 上实现 1ms 的低延迟和高准确率。以下是一个使用 RepViT 进行图像分类的示例代码:
from timm import create_model
import torch
# 加载预训练模型
model = create_model('repvit_m0_9', pretrained=True)
model.eval()
# 加载图像并进行预处理
image = torch.randn(1, 3, 224, 224) # 假设图像已经预处理为 224x224 大小
# 进行推理
with torch.no_grad():
output = model(image)
print(output)
目标检测和实例分割
RepViT 还可以与目标检测和实例分割框架结合使用,例如 MMCV 和 MMSegmentation。以下是一个使用 RepViT 进行目标检测的示例:
from mmdet.apis import init_detector, inference_detector
# 初始化检测模型
config_file = 'configs/repvit_faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/repvit_faster_rcnn_r50_fpn_1x_coco_epoch_12.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# 进行检测
result = inference_detector(model, 'path/to/image.jpg')
model.show_result('path/to/image.jpg', result)
典型生态项目
MMCV
MMCV 是一个强大的计算机视觉库,支持多种视觉任务,包括图像分类、目标检测和实例分割。RepViT 可以与 MMCV 结合使用,进一步提升模型性能。
MMSegmentation
MMSegmentation 是一个用于语义分割的开源工具包,支持多种分割模型。RepViT 可以作为骨干网络用于 MMSegmentation,提升分割任务的准确率。
TIMM
TIMM (PyTorch Image Models) 是一个包含多种图像模型的库,RepViT 模型已经集成到 TIMM 中,方便用户直接调用。
通过以上模块的介绍和示例代码,你可以快速上手并应用 RepViT 项目。希望这篇教程对你有所帮助!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









