首页
/ RepViT 项目使用教程

RepViT 项目使用教程

2024-09-13 14:32:46作者:卓炯娓

项目介绍

RepViT 是一个开源项目,旨在从 Vision Transformer (ViT) 的角度重新审视移动设备上的卷积神经网络 (CNN)。该项目通过将 ViT 的高效架构设计融入到轻量级 CNN 中,实现了在移动设备上高性能和低延迟的平衡。RepViT 不仅在图像分类任务中表现出色,还在目标检测和实例分割等下游任务中展示了优越的性能。

项目快速启动

环境准备

首先,确保你已经安装了 Python 3.8 和 PyTorch。你可以使用以下命令创建一个虚拟环境并安装所需的依赖包:

conda create -n repvit python=3.8
conda activate repvit
pip install -r requirements.txt

数据准备

下载并解压 ImageNet 数据集,确保训练和验证数据分别位于 trainval 文件夹中:

wget http://image-net.org/path/to/imagenet.tar.gz
tar -xzvf imagenet.tar.gz

模型训练

使用以下命令在 8 个 GPU 上训练 RepViT-M0.9 模型:

python -m torch.distributed.launch --nproc_per_node=8 --master_port 12346 --use_env main.py --model repvit_m0_9 --data-path /path/to/imagenet --dist-eval

模型测试

使用以下命令测试训练好的 RepViT-M0.9 模型:

python main.py --eval --model repvit_m0_9 --resume /path/to/checkpoint.pth --data-path /path/to/imagenet

应用案例和最佳实践

图像分类

RepViT 在 ImageNet 数据集上的表现非常出色,能够在 iPhone 12 上实现 1ms 的低延迟和高准确率。以下是一个使用 RepViT 进行图像分类的示例代码:

from timm import create_model
import torch

# 加载预训练模型
model = create_model('repvit_m0_9', pretrained=True)
model.eval()

# 加载图像并进行预处理
image = torch.randn(1, 3, 224, 224)  # 假设图像已经预处理为 224x224 大小

# 进行推理
with torch.no_grad():
    output = model(image)
    print(output)

目标检测和实例分割

RepViT 还可以与目标检测和实例分割框架结合使用,例如 MMCV 和 MMSegmentation。以下是一个使用 RepViT 进行目标检测的示例:

from mmdet.apis import init_detector, inference_detector

# 初始化检测模型
config_file = 'configs/repvit_faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/repvit_faster_rcnn_r50_fpn_1x_coco_epoch_12.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# 进行检测
result = inference_detector(model, 'path/to/image.jpg')
model.show_result('path/to/image.jpg', result)

典型生态项目

MMCV

MMCV 是一个强大的计算机视觉库,支持多种视觉任务,包括图像分类、目标检测和实例分割。RepViT 可以与 MMCV 结合使用,进一步提升模型性能。

MMSegmentation

MMSegmentation 是一个用于语义分割的开源工具包,支持多种分割模型。RepViT 可以作为骨干网络用于 MMSegmentation,提升分割任务的准确率。

TIMM

TIMM (PyTorch Image Models) 是一个包含多种图像模型的库,RepViT 模型已经集成到 TIMM 中,方便用户直接调用。

通过以上模块的介绍和示例代码,你可以快速上手并应用 RepViT 项目。希望这篇教程对你有所帮助!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511