RepViT 项目使用教程
2024-09-17 13:25:14作者:翟萌耘Ralph
1. 项目目录结构及介绍
RepViT/
├── data/
│ ├── train/
│ └── val/
├── detection/
├── figures/
├── logs/
├── model/
├── sam/
├── segmentation/
├── .gitignore
├── LICENSE
├── README.md
├── engine.py
├── eval.sh
├── export_coreml.py
├── flops.py
├── losses.py
├── main.py
├── requirements.txt
├── speed_gpu.py
├── train.sh
└── utils.py
目录结构介绍
-
data/: 存放训练和验证数据集的目录。
train/
: 训练数据集。val/
: 验证数据集。
-
detection/: 存放目标检测相关文件的目录。
-
figures/: 存放项目中使用的图表文件的目录。
-
logs/: 存放训练日志文件的目录。
-
model/: 存放模型定义和权重文件的目录。
-
sam/: 存放Segment Anything Model (SAM)相关文件的目录。
-
segmentation/: 存放语义分割相关文件的目录。
-
.gitignore: Git忽略文件配置。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
engine.py: 训练和评估引擎的实现。
-
eval.sh: 评估脚本。
-
export_coreml.py: 导出模型为Core ML格式的脚本。
-
flops.py: 计算模型浮点运算量的脚本。
-
losses.py: 定义损失函数的脚本。
-
main.py: 项目的主启动文件。
-
requirements.txt: 项目依赖库列表。
-
speed_gpu.py: 测量GPU推理速度的脚本。
-
train.sh: 训练脚本。
-
utils.py: 项目中使用的工具函数。
2. 项目的启动文件介绍
main.py
main.py
是项目的主启动文件,负责初始化模型、加载数据、启动训练或评估过程。以下是该文件的主要功能模块:
- 模型初始化: 通过
create_model
函数创建模型实例。 - 数据加载: 使用
DataLoader
加载训练和验证数据集。 - 训练和评估: 调用
engine.py
中的训练和评估函数进行模型训练和评估。 - 日志记录: 记录训练过程中的损失和评估结果。
使用示例
python main.py --model repvit_m0_9 --data-path ~/imagenet --dist-eval
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的Python依赖库。以下是该文件的内容示例:
torch==1.9.0
torchvision==0.10.0
numpy==1.21.0
coremltools==5.1
安装依赖
pip install -r requirements.txt
train.sh
train.sh
是一个训练脚本,用于启动模型的训练过程。以下是该脚本的内容示例:
python -m torch.distributed.launch --nproc_per_node=8 --master_port 12346 --use_env main.py --model repvit_m0_9 --data-path ~/imagenet --dist-eval
使用示例
bash train.sh
通过以上步骤,您可以顺利启动并配置RepViT项目,进行模型的训练和评估。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
268
308

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3