Wazuh FIM模块中eBPF与Audit的性能对比测试分析
2025-05-19 17:43:53作者:农烁颖Land
测试背景与目的
在文件完整性监控(FIM)领域,Wazuh团队近期开发了基于eBPF技术的新whodata模块。为了全面评估该模块对系统性能的影响,我们设计了一套严谨的测试方案,对比分析了三种场景下的系统表现:
- 基准测试(无Wazuh运行)
- 传统Audit模式下的Wazuh监控
- 新型eBPF模式下的Wazuh监控
测试环境与方法论
硬件配置
测试采用Ubuntu 22.04系统环境,配备4核CPU和8GB内存,通过Vagrant虚拟化平台部署。
测试工具
我们开发了两个核心脚本:
- 事件生成脚本:模拟高强度文件操作(创建、修改、删除),每轮循环处理10,000个文件
- 系统监控脚本:每秒采集多项关键指标,包括:
- 系统负载(1/5/15分钟)
- CPU使用率(用户/系统)
- 内存占用
- 磁盘I/O(TPS、读写速率)
- 关键进程资源占用(Wazuh-syscheckd和事件生成脚本)
测试方案
每种测试场景持续5分钟,并重复执行以确保数据可靠性:
- 基准测试:仅运行事件生成脚本
- Audit模式:启用Wazuh+Audit whodata
- eBPF模式:启用Wazuh+eBPF whodata
关键测试结果
系统整体性能表现
测试数据显示,不同监控模式对系统影响差异显著:
-
CPU使用率:
- Audit模式:峰值接近90%,主要由auditd进程消耗
- eBPF模式:峰值约50%,系统负载显著降低
- 基准测试:约30%的CPU使用率
-
内存占用:
- Wazuh-syscheckd进程在Audit模式下内存消耗更高
- eBPF模式内存占用更接近基准水平
-
磁盘写入:
- Audit模式产生更多磁盘写入操作
- eBPF模式磁盘I/O压力更小
事件处理能力
在同等时间内,不同模式完成的事件处理轮次:
- 基准测试:500轮
- eBPF模式:130轮
- Audit模式:仅34轮
这一数据直观反映了不同监控模式对系统处理能力的实际影响。
技术原理分析
Audit机制的性能瓶颈
传统Audit子系统通过内核审计框架实现监控,存在以下固有缺陷:
- 上下文切换开销:用户态与内核态频繁切换
- 事件排队延迟:高负载下易形成处理瓶颈
- 审计规则匹配:复杂的规则匹配增加CPU负担
eBPF的技术优势
新一代eBPF方案展现出明显优势:
- 内核态执行:减少上下文切换
- 高效过滤:事件处理更接近数据源
- 可编程性:灵活的事件处理逻辑
- 低开销:轻量级的监控探针
生产环境建议
基于测试结果,我们建议:
- 新部署环境:优先采用eBPF方案
- 现有Audit环境:评估迁移至eBPF的收益
- 关键系统:仍需评估特定内核版本兼容性
- 性能敏感场景:eBPF方案优势更为明显
结论
综合测试数据分析表明,Wazuh的eBPF whodata模块在保持同等监控能力的前提下,相比传统Audit方案可显著降低系统资源消耗。这一改进对于大规模部署环境和高负载场景尤为重要,为安全监控提供了更高效的实现方案。
未来,随着eBPF技术的持续发展,我们预期其在安全监控领域的应用将更加广泛,性能优势也将进一步扩大。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133