Scanpy中删除基因后仍出现在差异分析结果的原因解析
在使用单细胞分析工具Scanpy进行差异基因分析时,许多用户会遇到一个看似矛盾的现象:明明已经从数据集中删除了某个特定基因,但在后续的sc.tl.rank_genes_groups分析结果中,这个基因仍然出现在输出列表中。本文将深入解析这一现象背后的技术原因,并提供正确的解决方案。
问题现象
用户在使用Scanpy进行单细胞数据分析时,通常会执行以下操作流程:
- 从AnnData对象中删除特定基因(如'EYFP')
- 使用
sc.tl.rank_genes_groups进行差异表达分析 - 发现被删除的基因仍然出现在分析结果中
根本原因
这一现象的核心在于Scanpy的数据存储结构和默认参数设置:
-
原始数据(raw)的保留机制:Scanpy的AnnData对象有一个特殊的
.raw属性,用于存储原始未处理的数据。当用户对数据进行过滤或标准化时,原始数据会被自动保留在这个属性中。 -
rank_genes_groups的默认行为:
sc.tl.rank_genes_groups函数默认使用use_raw=True参数,这意味着它会从.raw属性中获取数据进行计算,而不是从主数据矩阵中获取。 -
删除操作的范围限制:当用户执行
adata = adata[:, adata.var_names != 'EYFP']时,这个操作只会影响主数据矩阵,而不会影响.raw属性中的数据。
解决方案
要彻底从分析中移除特定基因,需要采取以下步骤之一:
方案一:完全删除原始数据
# 删除原始数据
del adata.raw
# 过滤目标基因
adata2 = adata[:, adata.var_names != 'EYFP']
# 进行差异分析,明确不使用raw数据
sc.tl.rank_genes_groups(adata2, groupby='leiden', use_raw=False)
方案二:更新原始数据
# 将原始数据转换为主数据
adata.X = adata.raw.X
del adata.raw
# 过滤目标基因
adata2 = adata[:, adata.var_names != 'EYFP']
# 进行差异分析
sc.tl.rank_genes_groups(adata2, groupby='leiden')
技术建议
-
理解数据层次:在使用Scanpy时,要清楚区分主数据矩阵和原始数据(raw)的关系。主数据矩阵是当前活跃的数据,而原始数据是作为参考被保留的。
-
明确分析意图:如果确实需要完全排除某些基因,应该考虑是否需要保留原始数据。有时保留原始数据对后续分析是有价值的。
-
参数意识:在使用Scanpy函数时,要特别注意关键参数的默认值,如
use_raw、layer等,这些参数会显著影响分析结果。
扩展知识
Scanpy的这种设计实际上是一种保护机制,防止用户在数据处理过程中意外丢失原始数据。在单细胞数据分析流程中,通常建议:
- 在早期阶段保留原始数据,以便需要时可以回溯
- 在进行特定分析时,明确指定使用哪个数据源
- 对于最终报告或重要结果,考虑创建完全独立的数据副本进行操作
通过理解Scanpy的这种数据管理机制,用户可以更灵活地控制分析流程,避免出现类似"幽灵基因"的困惑现象。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00