Scanpy中删除基因后仍出现在差异分析结果的原因与解决方案
问题背景
在使用Scanpy进行单细胞RNA测序数据分析时,研究人员经常需要从数据集中移除特定基因(如报告基因EYFP),然后进行差异表达分析。然而,许多用户发现即使已经删除了目标基因,该基因仍然会出现在rank_genes_groups函数的输出结果中。
问题原因分析
这一现象的根本原因在于Scanpy的数据结构设计。Scanpy的AnnData对象包含一个特殊的raw属性,用于存储原始未处理的数据。当用户执行adata = adata[:, adata.var_names != 'EYFP']这样的操作时,实际上只修改了主数据矩阵(adata.X),而adata.raw中的原始数据保持不变。
默认情况下,sc.tl.rank_genes_groups函数会使用raw属性中的数据(参数use_raw=True)进行计算。因此,即使从主数据中删除了基因,只要该基因仍然存在于raw数据中,它仍然会被差异分析算法检测到。
解决方案
方案一:完全删除raw数据
# 将原始数据复制到主数据矩阵
adata.X = adata.raw.X
# 删除raw属性
del adata.raw
# 删除目标基因
adata2 = adata[:, adata.var_names != 'EYFP']
# 进行差异分析,明确指定不使用raw数据
sc.tl.rank_genes_groups(adata2, groupby='leiden_r1',
use_raw=False,
key_added='rank_genes_r1')
方案二:仅修改差异分析参数
如果希望保留原始数据,可以简单地在差异分析时指定不使用raw数据:
adata2 = adata[:, adata.var_names != 'EYFP']
sc.tl.rank_genes_groups(adata2, groupby='leiden_r1',
use_raw=False,
key_added='rank_genes_r1')
方案三:从raw数据中删除基因
更精确的做法是创建一个不包含目标基因的新raw数据:
# 获取不包含目标基因的索引
keep_genes = adata.var_names != 'EYFP'
# 创建新的AnnData对象作为raw数据
adata.raw = adata[:, keep_genes].copy()
# 删除主数据中的目标基因
adata2 = adata[:, keep_genes]
# 进行差异分析
sc.tl.rank_genes_groups(adata2, groupby='leiden_r1',
key_added='rank_genes_r1')
最佳实践建议
-
明确数据处理流程:在进行任何分析前,清楚地了解数据经过了哪些处理步骤,以及这些步骤对原始数据和主数据的影响。
-
检查数据状态:使用
print(adata)查看AnnData对象的完整状态,特别注意raw属性的存在与否。 -
参数显式设置:在使用
rank_genes_groups等函数时,明确指定use_raw参数,避免依赖默认值。 -
数据一致性:确保主数据和raw数据中的基因列表一致,避免混淆。
-
文档记录:在代码中添加注释,说明数据处理的目的和方法,便于后续复查。
通过理解Scanpy的数据结构设计和正确处理数据,可以有效避免这类基因删除后仍出现在分析结果中的问题,确保分析结果的准确性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00