LMDeploy v0.7.3版本发布:支持Qwen3系列模型与Ascend优化升级
LMDeploy作为一款高效的大语言模型推理部署工具包,近期发布了v0.7.3版本更新。该版本在模型支持、性能优化和功能完善等方面都有显著提升,特别是新增了对Qwen3系列模型的支持,以及对Ascend平台的深度优化。
核心功能更新
Qwen3系列模型支持
本次更新最引人注目的是新增了对Qwen3和Qwen3MoE模型的支持。Qwen3是通义千问最新推出的开源大语言模型系列,而Qwen3MoE则是其混合专家版本。LMDeploy不仅为这两个模型提供了PyTorch引擎支持,还修复了Qwen3MoE配置解析的相关问题,确保模型能够正确加载和运行。
Ascend平台优化
针对华为Ascend平台,v0.7.3版本带来了多项重要改进:
- 新增对DeepSeekV2模型的支持,扩展了Ascend平台的模型覆盖范围
- 实现了W8A8(权重8位、激活8位)量化在图模式下的支持,显著提升推理效率
- 优化了混合专家(MoE)模型在Ascend平台的性能表现
- 为QwenVL2.5模型启用了图模式支持
这些优化使得LMDeploy在Ascend平台上的表现更加出色,为开发者提供了更高效的推理解决方案。
性能与功能优化
在性能方面,开发团队对MLA(Multi-Head Latent Attention)进行了优化,移除了不必要的"v"加载操作,减少了内存占用。同时,对动态推理(DLinfer)中的rope操作进行了重构,提升了计算效率。
功能完善方面,v0.7.3版本改进了交互式API,增加了对特殊标记间空格的控制选项,并增强了与空文本输入的兼容性。此外,还新增了环境变量来控制超时设置,为系统管理提供了更多灵活性。
问题修复与稳定性提升
该版本修复了多个关键问题,包括:
- 修复了激活网格大小超出限制的问题
- 修正了工具调用时的JSON编码问题(设置ensure_ascii=False)
- 解决了流式内容中think_end_token_id的处理问题
- 完善了finish_reason的返回逻辑
- 修复了动态调度中的张量分发问题
这些修复显著提升了LMDeploy的稳定性和可靠性,为生产环境部署提供了更好的保障。
使用建议
对于需要使用Qwen3系列模型的开发者,建议直接升级到v0.7.3版本以获得最佳支持。在Ascend平台上进行部署的用户,可以充分利用新增的W8A8图模式量化来提升推理性能。同时,新版本对交互式API的改进使得开发对话系统更加便捷。
LMDeploy持续保持对最新模型和硬件的快速适配能力,v0.7.3版本的发布再次证明了这一点。无论是研究机构还是企业用户,都可以通过LMDeploy获得高效、稳定的大模型推理体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00